
RADCTien, Vol Cua(of nine)
Nawk-1Repork

0

Syracuse Unlv.cslty

Robert A. Meyer and Susan E. Conry

APPROVED FOR PASTLB RELEASE; DISTRIBUTION UNLIMITED

DOTIC_%L4 ELCS CTE nL
ROME AIR DEVELOPMENT CENTER ArY

lr Force Systems Command....
Grffiss Air Force Base, NY 13441-5700

89MA 224 078

This report has been reviewed by the RADC Public Affairs Division (PA)
S and is relasable to the National Technical Information Service (NTIS). At

NTiS it will be releasable to the general public, including foreign nations.

RADC-TR-88-324, Vol III (of nine) has been reviewed is approved
for publication.

APPROVED:

ARLAN MORSE, Capt, USA
Project Engineer

APPROVED:

tN D. KELLY
Acting Technical Director
Directorate of Communications

FOR THE COMMAER:

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC CDCLD) Griffiss AFS NY 13"1-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific doucuent require that it be returned.

UNCLASSIFIED
SECURITY CASIFICATION OF THIS PAGE

Farm Approved

REPORT DOCUMENTATION PAGE OMNo. 0704-0

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABIUTY OF REPORT
N/A Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.
N/A__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR-88-324, Vol III (of nine)

6s. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Northeast Artificial (f applicble) Rome Air Development Center (DCLD)
Intelligence Consortium (NAIC) I

6c. ADDRESS (City, State, and ZIP Cod.) 7b. ADDRESS (City, State, and ZIP Code)
409 Link Hall Griffiss AFB NY 13441-5700
Syracuse University
Syracuse NY 13244-1240
fa. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM3FR

ORGANIZATION (ff appliable) F30602-85-C-0008Rome Air Development Center COES F00-5C00

&_- ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Griffiss AFB NY 13441-5700 PROGRAM PROJECT TASK WORK UNITELEMENT NO. NO. NO ACCESSION NO.

33126F 2155 02 10
11. TITLE (Include Secury Classification)
NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1987 Distributed Artificial
Intelligence for Communications Network Fanagenent
12. PERSONAL AUTHOR(S)
Robert A. Meyer, Susan E. Conry
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Aonth, Day) IS. PAGE COUNTInterim I FROM Dec 86 To Dec87 March 1989I 114

t6. SUPPLEMENTARY NOTATION i

This effort was performed as a subcontract by Clarkson University to Syracuse University,
Office of Sponsored Program. ,. ' ¢ "mwn
17. COSATI CODES 1!1. SUBJECT 'TERMIS (Cniu .rvs If neesr an idntf by lock number)

FIELD GROUP SUB-GROUP Atiffical -na.1l-igence, Distributed Artificial Intelligence,
1Iulation'--Distributed Planning,>t'raphical User Interface,

07 Knowledge-based Reasoning, Communications Network
19. ABSTRACT (Connue n ewer ! n ag identft by block number)

e Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems
Command, Rome Air Development Center, and the Office of Scientific iesearch. Its purpose is

-.to conduct pertinent research in artificial intelligence and to perform activities ancillary
to this research. This report describes progress that has been made in the third year of the
existence of the NAIC on the technical research tasks undertaken at the member universities.
The topics covered in general are: versatile expert system for equipment maintenance, dis-
tributed AI for communications system control, automatic photo interpretation, time-oriented
problem solving, speech understanding systems, knowledge base maintenance, hardware archi-
tectures for very large systems, knowledge-based reasoning and planning, and a knowledge
acquisition, assistance, and explanation system. The specific topic for this volume is the
use of knowledge-based systems for communications network management and control via an
architecture for a diversely distributed multi-agency system.

20. DISTRIBUTON/AVAILABLITY OF ABSTRACT 21. ASTACT SECURITY CLASSIFICATION
Q UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UN'.CLASJSFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
ARLAN MORSE, Capt, USAF (315) :30-7751 RADC/DCLD

DD Form 1473, JUIJ 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

NAIC

Northeast Artificial Intelligence Consortium
1987 Annual Report

VOLUME 3

DISTRIBUTED ARTIFICIAL INTELLIGENCE FOR

COMMUNICATIONS NETWORK MANAGEMENT

Robert A. Meyer
Susan E. Conry

Electrical and Computer Engineering Department
Clarkson University
Potsdam, NY 13676

3 Table of Contents

3.1 Executive Summary 3-2
3.2 Introduction 3-4
3.3 Environment for Development of Distributed Systems 3-6

3.3.1 System Structure 3-6
3.3.2 Concurrency Control 3-7
3.3.3 Interface Facilities and Performance Issues 3-8

3.4 Distributed Planning 3-10
3.4.1 Plan Characteristics 3-10
3.4.2 Plan Generation 3-11
3.4.3 Reasoning About Constraints and Conflicts 3-13
3.4.4 Multistage Negotiation 3-19

3.5 Distributed Knowledge Base Management 3-22
3.5.1 Introduction 3-22
3.5.2 Representational Issues in Domain Knowledge 3-22
3.5.3 Distribution of Global Network Knowledge 3-24
3.5.4 Management of a Distributed Knowledge Base 3-26
3.5.5 Future Work 3-29

Bibliography 3-30

Appendix 3-A SIMULACT Users Manual (Draft)
Appendix 3-B A Distributed Development Environment for Distributed Expert Systems
Appendix 3-C SIMULACT, A Generic Tool for Simulating Distributed Systems
Appendix 3-D The Role of Knowledge-based Systems in Communications System Control
Appendix 3-E Machine Intelligence for DoD Communications System Control

3-1

NAIC Annual Report

Volume 3

3.1 Executive Summary

-The work described in this volume has been performed at Clarkson University during
1987, the third year of the NAIC research contract with the Rome Air Development
Center. The AI research at Clarkson has continued to concentrate on the study of
distributed problem solving systems, using communications network management and control
as the problem domain. This report gives a brief introduction to the problems of
interest and a short review of work completed in the previous years. The major portion
of this report documents the principal research accomplishments of this year.

Activity at Claxkson has focused in three areas: distributed planning, distributed
knowledge base management, and an environment for the development of distributed
systems. Significant progress has been achieved in distributed planning, and our
distributed development environment has matured Work on a distributed knowledge base
manager (KBM) has been driven, to some extent, by the requirements for knowledge base
access generated from the planner.

Planning work has centered around further investigation of multistage negotiation
as a cooperation paradigm for distributed constraint satisfaction problems. In our
domain these problems arise from the need to restore service for multiple disrupted
communication circuits in a network with decentralized control and limited localized
knowledge about global network resource availability. Two aspects of negotiation have
been explored. The first is the phase involving plan generation. This has been
especially interesting in that new insight has been gained concerning the degree of
nonlocal knowledge necessary in formulating feasible local choices.

Work in distributed planning has also led to formulation of an algebra of conflicts
to be used in reasoning during negotiation. The planning problems we find in the
communications systems domain involve distributed resource allocation problems in which
hard local constraints must be enforced in a global plan. This year, we have devised
mechanisms which enable an agent to reason about its own local constraints and exchange
knowledge concerning the impact of nonlocal actions, incorporating new knowledge in a
consistent manner. These mechanisms appear to be particularly interesting because they
seem to be applicable to a wide class of distributed constraint satisfaction problems.

During 1987, SIMULACT, oui distributed development environment has matured. It has
been used as a testbed environment in investigations of planning issues and in managing
distributed knowledge base functions. Over the course of the year, SIMULACT has been

3-2

converted to Common Lisp, enhanced user interface facilities have been incorporated, and
the system has been implemented on a network of Lisp machines. Experiments have been
performed to determine the extent to which process management overhead impacts apparent
distributed system performance in single processor and multiple processor
configurations. In addition, SIMULACT has been demonstrated running distributed
applications at the AAAI Annual Meeting and at the NAIC meetings.

Work on the Knowledge Base Manager has been driven largely by needs perceived in
distributed planning. Much of the progress has been in identifyng the forms of
interface and query processing required by the planner. In addition, we have
investigated the feasibility of a natural language user interface, .primarily as a
debugging tool. While designing the KBM, we uncovered certain limitations arising from
the knowledge representation scheme initially chosen for communications circuits. A
moderate set of revisions to the design of the knowledge base has been completed as a
result of changing the representation of circuit knowledge. These changes were also
incorporated into GUS, a Graphical User interface for Structural knowledge, which we
developed in previous years as a tool for knowledge acquisition in the communications
network domain.

Accession For

NTIS GA&I OK

U:",imu:icod F]

Avrdi4ebII1tv Codes

t-

3-3

3.2 Introduction

The goal of this research is to answer fundamental questions about the design of
distributed, cooperative, knowledge-based problem solving systems. Our research is
conducted with the context of a particular problem domain in mind; this domain is
communication network management and control. During the previous two years we have
performed an in-depth analysis of this problem domain, relying primarily on a model of
the Defense Communications System (DCS) as it is envisioned for the late 1990's. The
result of this effort was the design of a high-level architect-re for a diversely
distributed, mufti-agent knowledge-based system. We view such a system as consisting of
a distributed collection of semi-autonomous, cooperating specialists which provide
assistance to human operators.

During this past year we prepared and presented two papers at technical meetings
which document our problem domain analysis. In the first [1] (also in Appendix 3-D of
this report), we describe the functional requirements as determined from our analysis.
These requirements form the basis for the system architecture. From an Al perspective,
our proposed architecture is unique in its need for distribution in both the spatial or
geographic domain and in the functional domain. As the system is being designed and
implemented we are discovering new techniques to handle multi-agent interaction under
varying assumptions concerning similar goals and problem solving strategies among the
agents.

A second paper [2] (also in Appendix 3-E) relates our work, which is intended to be
basic engineering research or very eaxly development, to other research efforts oriented
to specific prototype development of expert systems for communications network control.
We believe one strength of our work is that it addresses fundamental distributed Al
research issues in the context of cumrent, real-world problems. In [2] we discuss how
these projects together form an evolutionary design and development path for the
transition of AI technology from research labs to field usage.

One of our first objectives was to create an environment for the development of
distributed AI systems. We are interested in distributed systems of the
"coarse-grained" variety, having a relatively small number of processors. However, even
for numbers in the range of 5 to 25 processors, it is very expensive to provide a
dedicated research facility with a network of Lisp machines. Instead, we have developed
SIMULACr, a simulation facility for multiple actors designed to operate on a network of
one or several Lisp machines. SIMULACT has several important characteristics which
have been documented in detail in the SIMULACT User's Manual (in Appendix 3-A). A
general introduction and summary of SIMULACT's features are given in section 3.3 of
this report. The design of SIMULACT and its performance characteristics have been
documented in two technical papers presented during this year [3,4] (also in Appendices
3-B and J-C).

Early in the development of our distributed testbed we recognized the need for a
tool to assist in the acquisition of large amounts of rather tedious knowledge about the

3-4

structural aspects of a communications network. This structural knowledge is very
important because much of the reasoning needed to assess network state, to diagnose
faults, and to generate restoral plans is based on the underlying network structure. We
also found it necessary to acquire this knowledge on a global network-wide scale, even
though each local network controller would have a limited, local view of the network.
During the two previous years a tool was developed for this purpose. This program,
called GUS, uses a graphical interface to acquire knowledge from the user about network
structure. The initial version of GUS was completed and documented in a thesis [5] in
January of this year. During this year we made revisions, additions and bug fixes to
GUS as well as the changes necessary to maintain compatibility with the current release
of the Symbolics Lisp System.

The major concentration of our effort this year has been on the design and
implementation of a distributed planner and a distributed knowledge base manager (KBM).
The planner is at a more advanced stage because it continues the research started last
year which resulted in the development of multistage negotiation. During this year we
implemented the first version of the plan generation phase and began to refine the
design of the multistage negotiation protocol. A key idea of multistage negotiation is
that an agent of a distributed planner must be able to discover conflicts among subgoals
which arise from the interaction of local and nonlocal constraints. We have developed a
formal system for reasoning about conflicts and propagating the impact of local
decisions among the agents involved. This is done without the exchange of complete
local state. Section 3.4 gives a more detailed presentation and includes an extensive
example illustrating this process.

The design of a distributed KBM has followed the implementation of the planner. At
each local network controller a knowledge base must be maintained with the locally known
facts, beliefs and conclusions derived about the operational state of the network. One
of the functions performed by the KBM is to respond to local queries from other agents
at the same site, such as the planner. Thus, as the planner has progressed from design
to implementation, a corresponding part of the KBM has also been developed. This
interdependence between KBM and the planner has contributed to our gaining a better
understanding of representational issues associated with some forms of domain
knowledge. For example, we found that our initial understanding of circuits was
inadequate for use with the problem solving paradigm of the planner. This is explained
in more detail in section 3.5. Much work remains to be done in the design of a fully
functional distributed KBIM. Our research directions in this area for the next year are
also described in section 3.5.

3-5

3.3 Environment for Development of Distributed Systems

In this section, we describe our continuing work with SWMULACT, a development
environment for distributed problem solving systems. During 1987, most of our attention
on SIMULACT has been focused in two areas: development of better user interface
facilities and distribution of the system so that multiple host networks can be
utilized. In this section, we briefly outline various features of SIMULACT and indicate
the nature of the performance results. More detail (including a user's manual) is found
in Appendices 3-A, 3-B, and 3-C.

The underlying model of problem solving which is employed in SIMULACT regards the
problem solving system as a collection of semi-autonomous agents which cooperate in
problem solving through an exchange of messages. The system is modular. each agent is
essentially an independent module which can easily be "plugged in" to the system. An
agent's interaction with other agents in the system is totally flexible, and is user
specified. Neither the form nor the content of inter-agent messages is specified by
SIMULACT itself. In addition, the user can suspend execution at any time, examine the
state of any agent, modify the state, the knowledge base, or even the code of an agent,
and resume execution. A trace facility makes post-mortem examination of activity
feasible, and a gauge facility allows the user to instrument the system in a very
flexible manner.

SIMULACr is a distributed system that allows n agents to be modelled on k machines,
where n > k. Each agent runs asynchronously and coordinates its activity with that of
other agents through the exchange of messages. The activities performed by each agent
are assumed to be complex, so that the parallelim is coarse grained. SIMULACr allows
the programmer to write code in Lisp as though there were as many Lisp machines in the
network as there are agents in the distributed system being developed.

3.3.1 System Structure

SIMULACT is comprised of four component types: Actors, Ghosts, Directors, and an
Executive Director. Actors are used to model agents in the distributed environment.
Each Actor type is individually defined, and used as a template to create multiple
instances of that Actor type. An Actor is a self contained process which runs in its
own non-shared local environment. Although Actors run asynchronously, the elapsed CPU
time for each actor never varies by more than one "time frame".

Ghosts are used in SIMULACT to generate and inject information into the model that
would naturally occur in a "real" distributed system. They do not represent any
physical component of the model. For example, external inputs (alarms, sensors, etc.)
affecting the state of the system can be introduced via Ghosts, as well as inputs that
reflect the "side effects" of the system's activities. Ghosts can also be used to
inject noise or erroneous information into the system so that issues concerning
robustness can be easily investigated. The performance of an knowledge based system can
be monitored in subsequent runs through the simple modification of these Ghosts.

3-6

Due to the similarities between Actors and Ghosts, we refer to them as Cast
members. Each Cast member has a unique "stagename" and a "mailbox" used by the the
communication facility in routing messages among members. Each also has a "script
function" which defines its high level activity.

The control structure residing at each host processor in SIMULACT's distributed
environment is known as the Director. The Director is responsible for controlling the
activities of the Cast members at that site, and for routing messages to and from these
members. These activities are assigned to the Grip and Messenger respectively. The
responsibilities of the Grip range from setting up and initializing each Cast member's
local environment to managing and executing the Actor and Ghost queues. The Messenger
only deals with the delivery and routing of messages. When a message is sent, it is
placed directly into the Messenger's "message-center". During each time frame, the Grip
invokes the Messenger to distribute the messages. Whenever the destination stagename is
known to the Messenger, the message is placed in the appropriate Cast member's mailbox.
Otherwise, it is passed to the Executive Director's Messenger and routed to the.
appropriate Host.

There is one Executive Director in SIMULACT which coordinates all Cast member
activities over an entire network. The Executive Director provides the link between
Directors necessary for inter-machine communications, directs each Grip so that
synchronization throughout the network is maintained, and handles the interface between
the user and SIMULACT.

3.3.2 Concurrency Control

Concurrent execution of n Actors on k machines (n > k) is emulated through the
imposition of a "time frame" structure in execution. A time frame cycle is divided into
three phases: invocation of the Ghosts, the distribution of mail by the Messengers, and
invocation of the Actors.

At the start of the first time frame, the Executve Director notifies all Directors
to begin executing Ghosts. (This models the occurrence of events in the world external
to the distributed system.) At the conclusion of the Ghost frame, each Director
automatically invokes its Messenger. The Messenger distributes all messages which were
generated during the current Ghost frame, as well as all those resulting from the
previous Actor frame. Mail destined for Cast members residing on the same host
processor is placed in the appropriate mailboxes and all non-local mail is forwarded to
the Executive Director's Messenger. In order to reduce network overhead, this transfer
is done in the form of a single message. This communication always occurs, even if
there are no messages to distribute, as a synchronizing mechanism for the time frame so
that Actors cannot "run away". After sending this message, each Director enters a wait
state until an Actor frame directive is received from the Executive Director. The
Executive Director's Messenger is invoked immediately following the receipt of the last
Director's Messenger communication.

3-7

Upon receiving an Actor frame command from the Executive Director, each Director's
Messenger is invoked to distribute any inter-machine messages that may have been
received. Next, each Actor is allowed to run for one time slice (time frame). At this
point the Executive Director immediately enters its next time frame cycle, sends the
Ghost frame command, and waits for all the Director Messengers to send their next
synchronizing signal.

3.3.3 Interface Facilities and Performance Issues

There are five user interface facilities available in SIMULACT. These facilities
provide mechanisms for inter-agent communication (Mail), code sharing (Support
Packages), interactive monitoring and debugging (Peek and Poke), post mortem trace
analysis (Diary), and runtime monitoring (Gauge). They were designed to make SIMULACT
more attractive as a development environment for knowledge based systems. Each of these
facilities is explained in more detail in Appendix 3-A and Appendix 3-B

The overhead incurred in managing the emulation of a distributed environment is one
important measure of system performance. We have conducted a group of experiments to
assess the degree of overhead incurred by SIMULACT. These experiments were designed to
obtain results that would assess SIMULACT's behavior as the number of messages per time
frame increases. In each of the experiments, the number of messages per time frame, m,
was varied over the range 0 to IOn, where n is the number of Actors in the system. Each
Actor process worked continually, consuming its total time slice allowed per time
frame. Thus when n = 0, we measured SIMULACT's best case performance. It should be
pointed out that in the distributed case where n > 0, the number of messages per time
frame in our experiments represented entirely inter-machine communications, emulating a
worst case scenario.

The measurement used to represent SIMULACT's performance was a "time frame ratio"
gauge. This ratio is defined as:

(elapsed wall time)

(sum of all Actor elapsed time)

This ratio times the number of Actors in the system provides an estimate of how much
time is required by SIMULACT to execute one time frame. For the ideal situation
involving no overhead, this ratio would be 1.0 and 0.5 for the one and two machine cases
respectively.

Forthe single machine case with no message passing, S IMULACT' s overhead approaches
4.5%. Similarly, the distributed case approaches 10% overhead. Both sets of data
indicate that as the number of messages per time frame increases, so does the overhead.
In fact, between 100 and 200 messages per time frame handled by the system seems to be a
saturation point for the Messenger. Currently the Messenger uses an a-list to associate
stagenames with Cast members. Wc should see improvement when this is implemented as a
hash table lookup. Also note that the distributed case after saturation degrades at a

3-8

much faster rate. One explanation for this can be found in the observation that all
inter-machine messages are handled three times by different Messengers and must be sent
over the Lisp machine network. Messages among agents residing at the same host
processor are handled once by the Messenger and sent directly to Lhe appropriate
mailbox.

3-9

3.4 Distributed Planning

In this section, our research in distributed planning is described. We view
distributed planning as a task which is carried out by a group of semi-autonomous
agents, each of which has a limited view of the global system state and control over
only a subset of the resources required to determine and execute an acceptable plan.
Our model of distributed planning is therefore one involving two phases: a plan
generation phase and a negotiation phase.

Because our model of distributed planning is one which can be applied to domains in
which planning involves distributed allocation of scarce resources, we first discuss the
characteristics which plans in this type of domain have. We then provide more detail
concerning the plan generation phase and our solution to some of the problems which
arise in plan generation in section 3.4.2. For negotiation to be effective as a
mechanism for distributed decision making, agents must be able to reason about the
nonlocal impact of locally attractive decisions. We have developed a formalism for use
in reasoning about local constraints and the impact of nonlocal decisions on the set of
local constraints. These are discussed in section 3.4.3. Finally, in section 3.4.4, we
describe the process of multistage negotiation as a protocol which uses this formalism
as the basis for reasoning in determining an acceptable plan.

As has been mentioned, plan generation is a stage in which alternative sub-plans
are determined for satisfaction of each global goal that has been instantiated. It
involves a distributed search across problem solving agents for coordinated resource
allocations that could be used to satisfy global goals. During plan generation, each
global goal is decomposed into local subgoals each of which represents requests to
partially satisfy that goal using local resources. Each agent has knowledge concerning
parts of global plans that use resources local to that agent. Negotiation then
determines a set of plans for execution which forms at least a satisficing solution for
the system goal of satisfying a maximal number of global goals.

3.4.1 Plan Characteristics

In many domains, planning can be viewed as a distributed resource allocation
problem in which resources are objects that are available for use in completing some
task. The resources available have two significant characteristics: resources are
indivisible (not consisting of component resources), and the supply of resources is
limited.

Our model of planning differs from many others in that both control over resources
and knowledge about these resources are distributed among problem solving agents. Some
of the resources are under the direct control of a single agent, while control over
others is shared by two agents. Resources controlled by a single agent are local to
that agent and cannot be allocated by any other agent. Indeed, any given agent only has
knowledge concerning those resources that are local and those it shares with other
agents. Although shared resources are aVo locally known, they must be regarded

3-10

somewhat differently in reasoning because allocation of shared resources must be
coordinated by those agent- which share control. Each agent must therefore know which
of its resources are shared and which agents are involved in the shared control of a
particular resource.

In this kind of environment, a plan is a sequence of local resource allocations
which satisfy some number of global goals. In general, global goals arise concurrently
in multiple agents. An acceptable plan is thus a set of resource allocations which
satisfies as many of the global goals as possible, subject to local resource
constraints. As has been mentioned, planning proceeds in two phases: plan generation
and negotiation. Plan generation is a stage in which alternative sub-plans are
determined for satisfaction of each global goal that has been instantiated. This phase
is analogous to finding all sequences of operator/argument pairs that could be used to
accomplish a task in classical planning systems. Plan generation involves a distributed
search across problem solving agents for coordinated resource allocations that could be
used to satisfy global goals.

Plan generation determines a set of plans each of which satisfies some individual
global goal. Each of these plans is feasible, taken in isolation, since plan generation
does not consider any goal interaction problems. Negotiation is necessary to select a
set of plans which satisfies as many global goals as possible while not violating any of
the constraints which are applicable.

In our application domain, service restoral is treated as a distributed planning
problem. Each global goal corresponds to the restoral of a single circuit that has been
disrupted. A resource is a channel on a trunk, and a plan is a sequence of trunk
connections to restore a path between two endpoints. Each agent has control over all
resources in an entire subregion and shares those resources that cross subregion
boundaries. The reader should refer to section 3.5 for an explanation of these domain
specific terms.

3.4.2 Plan Generation

During plan generation, each global goal is decomposed into local subgoals which
represent requests to partially satisfy the global goal using local resources. Thus, an
agent knows about parts of "global" plans that use resources local to that agent. These
partial plans are called plan fragments. Each subgoal in an agent has associated with
it all the plan fragments the agent could use to partially satisfy the global goal
corresponding to that subgoaL As a result of this decomposition, plans exist only in
dis ributed form, as plan fragments distributed among the agents. It is the shared
resources that provide the connections between plan fragments in various agents to form
global plans.

As we have previously noted, plan generation involves a distributed search among
agents. It is important to realize that plan generation has a number of characteristics
which distinguish it from standard circuit routing problems, so it is not possible to

3-11

use standard algorithms associated with these problems. Circuit rouing algorithms
generally attempt to restore one circuit at a time by finding the "best" path as
measured by some cost function. In contrast, we attempt to restore multiple circuits at
a time through negotiation over available alternatives. Since negotiation requires that
multiple paths be found for each circuit, the notion of using routing tables which
establish preferred next neighbors is not applicable. Algorithms that depend upon
global routing information at each node are also impractical in our domain due to the
cost of maintaining consistency among nodes. When viewing graph representations of the
standard problems, it is usually assumed that a path exists between any two edges into a
vertex. In our domain, however, the vertices correspond to subregions. In performing
service restoral we make certain assumptions about network connectivity. Within a site,
we assume that it is possible to complete a path between any two links entering the
site. However, we do not assume the same connectivity between links entering a
subregion. It may be impossible to connect two links entering a subregion using only
resources within that subregion. As a consequence, it may not be possible to connect
two sites in a subregion using only local resources.

Plan generation begins when an agent is notified that a global goal has been
instantiated. The agent creates a subgoal corresponding to this global goal and derives
all the alternative ways it can use its resources in partial satisfaction of this
subgoal. Each of these alternatives becomes a plan fragment. If any of these plan
fragments involve shared resources, the appropriate agent is sent a request to continue
building the plan using its local resources. This process is repeated until all
requests to build the plan have been answered.

Each request issued while building a plan must carry enough information to permit
const-uction of a complete plan in satisfaction of the global goal. Agents which
subsequently handle requests for satisfaction of a particular goal must be able to
determine which of their local resources could be used to extend the plan. They must
also be able to ascertain which plan fragments are associated with satisfaction of the
same global goal. For these reasons, requests for extension of partially constructed
plans must contain an identifier for the associated global goal, a description of that
goal, and the name of shared resources involved in the extension of the plan (together
with any constraints on these shared resources).

It should be noted that it is possible for an agent (agent A) to have partially
constructed a plan and pass responsibility to another agent for extension of that plan
only to have some third agent request that agent A extend the same plan further. For
this reason, agents must be able to detect when they are being asked to extend a plan
which they have partially constructed and determine which plan fragment is associated
with the requested extension. This is necessary because the associated plan fragment
will be augmented as the plan is extended. The strategy of augmenting existing plan
fragments in this way provides a mechanism whereby the inter-agent negotiation can be
made more effective, reducing the extent to which redundant work is performed. The
strategy is only feasible if it is possible to match existing plan fragments in an agent
with requests which would extend them. Our solution to the problem involves a naming
scheme for plans in which each agent appends a unique name to each plan fragment which

3-12

can be used to extend a plan. This name is carried with the plan as it is developed.

Since it is possible for more than one agent to be notified of the instantiation of
the same global goal, the search strategy can be improved. When an agent receives a
request to continue building a plan, it checks the plan fragments it has already
constructed for the same global goal. If the agent can use a partial plan it has
already built to complete the incoming plan, it matches these partial plans in
satisfaction of the request.

There are two possible replies for a request to continue building a plan. If an
agent has no way to continue the plan or if none of the corresponding plan fragments
have satisfactorily completed the plan, then the requesting agent is notified to delete
the corresponding plan fragments as viable alternatives. On the other hand, if an agent
is able to complete the request, either solely or with the aid of other agents, then the
requesting agent is notified that the corresponding plan fragments are parts of a
feasible plan. It is important to note that when two agents share a resource, each may.
view that resource differently. When one agent must constrain how a shared resource is
used in the plan, then the requesting agent is also notified of the constraint.

In the context of our domain, the purpose of plan generation is to determine all
loop-free paths that could be used to restore a circuit. When a circuit fails, plan
generation is initiated in the two subregions where the circuit terminates. In issuing
requests to build a plan, the agents pass a goal description which includes the name,
priority, source, and destination of the circuit to be restored. Agents derive plan
fragments by requesting information about the physical world from the local knowledge
base manager.

3.4.3 Reasoning About Constraints and Conflicts

Subgoal interaction problems are of critical importance in conventional planning
systems. Reasoning about these problems is essential in determining a feasible plan of
action in most cases. In distributed planning systems, detecting and handling subgoal
interactions is just as important as in more conventional systems and even more
difficult. Multistage negotiation has been devised as a mechanism whereby agents in a
distributed problem solving system can exchange knowledge about nonlocal state and
reason about the impact of nonlocal decisions on those made locally. In order to do
this, the nature of the subgoal interactions and the character of the reasoning required
to arrive at reasonable decisions must be formalized.

During 1987, we have been particularly concerned with determining the nature of
goal interactions and devising a way of reasoning about these interactions in a
distributed environment. In our application domain, the goal interaction problems
manifest themselves in the form of conflicts over resources which have their roots in
the constraints on resource utilization which are present in the domain.

3-13

In this subsection, we describe a formalism which has been developed for
propagating information about nonlocal impact of decisions made locally. The discussion
in this subsection is organized around an example. This example is simple, but intended
to illustrate the reasons why subgoal interactions occur, the nature of these
interactions, and the way in which knowledge concerning nonlocal impact of local
decisions can be propagated.

We consider as an example a scenario in which there are four agents (agents A, B,
C, and D) in a distributed planning system. In this example scenario, each of these
agents has knowledge concerning certain resources. This local knowledge is indicated in
Table 3.1. If entry (agent i, resource r) in Table 3.1 is k, then agent i has k copies
of resource r to utilize in problem solving. The shared resources (such as r2 and r5)
are evident, as they are known to more than one agent.

rl r2 r3 r4 r5 r6 r7 r8 r9 rlO r11

Agent A 3 2 2
Agent B 1 1 2
Agent C 2 3 2 2 1
Agent D 2 2 1 3 1

System Resource Availability

Table 3.1

This scenario assumes that the system is attempting to simultaneously satisfy four
global goals: gl, g2, g3, and g4. During plan generation, global plans have been
determined for each of these goals. These plans and the resource requirements
associated with each are shown in Table 3.2. It should be noted that Table 3.2 shows
the global plans from a global perspective. No single agent in a distributed problem
solving system has complete knowledge concerning any of these plans. Indeed, as is
shown in Table 3.3, no single agent is even aware of the total number of alternative
plans that have been generated.

From these two tables, it is evident that global plans are composed of collections
of local plan fragments. For instance, global plan gipl is composed of plan fragments
A-a, B-a, C-a, and D-a while global plan g4p2 consists of A-h and C-j. Examination of
Table 3.2 and Table 3.3 also reveals the type of constraints that are relevant in this
distributed planning problem. A choice on the part of agent A to satisfy g2 through
execution of plan fragment A-d constrains the set of feasible and consistent
alternatives known to agent C. Given agent A's choice, agent C must utilize plan
fragment C-d if it is to contribute in satisfying g2. It is this kind of nonlocal
impact of local decisions that must be assessed by an agent in determining its actions.

To enable an agent to efficiently exchange knowledge concerning the nonlocal impact
of local decisions, we first determine a conflict set for each plan fragment. The
conflict set for plan fragment x indicates the minimum impact (locally) associated with

3-14

a choice to execute plan fragment x. If one were to consider a maximal set M of
mutually feasible plan fragments (including plan fragment x) known to an agent, the

rl r2 r3 r4 r5 r6 r7 r8 r9 rlO ri 1

glpl 1 1 1 1
glp2 1 1 1 1 1
glp3 1 1 1
glp4 1

g2pl 1 1 1 1
g2p2 1 1 1
g2p3 1 1 1

g3pl 1 1 1 1 1
g3p2 1 1

g4p 1 1 1 1 1
g4p2 1 1 1 1
g4p3 1 1 1

Global Plans Generated

Table 3.2

complement of M is an element of the conflict set for x. It should be noted that the
complement is taken with respect to the set of all of the agent's plan fragments for
goals other than the one associated with x. The conflict set for plan fragment x can in
fact be defined as the set of sets constructed in this manner by considering the
complements of all maximal mutually feasible sets of local plan fragments determined in
this way. Though this view of the conflict set is intuitively appealing, it is often
more computationally attractive to treat the conflict set of x in its dual form: as the
collection of minimal mutually infeasible sets of plan fragments, given that plan
fragment x is to be executed.

Three significant observations can be made concerning the conflict set of a plan
fragment. First, the complement of each element of the conflict set is indeed a maximal
feasible set. Secondly, the agent will be compelled to forego execution of the plan
fragments in some element of the conflict set if it chooses to execute plan fragment x.
The "badness" of a decision can be related to the size of elements in the conflict set.
Finally, representation of impact in the form of a conflict set seems to provide a
substantially more compact form of representation that can be more efficiently used in
reasoning than many others.

3-15

Agent A r r2 rl1 Agent B r9 r1O rlI

gl A-a I 1 1 gI B-a 1 1
A-b 1 1 B-b
A-c I

g2 B-c 1
g2 A-d 1 1

A-c 1 1 g4 B-d
B-c

g3 A-f 1 1

g4 A-g 1 1 1
A-h 1 1

Agent C r2 r3 r4 r5 riO

gI C-a 1 1
C-b I I
C-c I I

g2 C-d 1 1 1
C-C 1 1
C-f 1

S3 C-g 1 1
C-h

84 C-i I 1 1
C-j 1 1
C-k 1 1 1

Agent D r5 r6 r0 r8 9

g1 D-a I I I
D-b 1 1 1
D-c I 1

g2 D-d
D-e I 1

g3 D-f I
D-9

g4 D-h I 1
D-i 1

Local Knowledge About Plan Fragments

Table 3.3

3-16

To illustrate the concept of the conflict set, suppose that agent A chooses to
satisfy gl through executing plan fragment A-a. Because no agent should act to satisfy
a given goal in more than one way, we disregard plan fragments A-b and A-c in
constructing the conflict set for A-a. Using the (revised) constraints on resource
availability we construct the conflict set. This set is:

((A-d, A-f, A-h), (A-d, A-g. A-h), (A-d, A-e, A-f, A-g), (A-f, A-g, A-h))

From this example, it is clear that each element of the conflict set may indeed contain
more than one plan fragment for a given goal. The reason for this phenomenon is that
the complement of an element of the conflict set forms a maximal feasible set
(locally). Consider, for instance, the set (A-d, A-g, A-h}. The complement of this
element of the conflict set is {A-a, A-e, A-f), which is a maximal feasible set. Agent
A must, if it chooses to execute A-a, forego execution of all plan fragments present in
one of the four elements of the conflict set.

The conflict set is concerned with relationships among plan fragments. Each agent
must also be able to assess the impact of a choice on its ability to contribute to
satisfaction of the global goals about which it has knowledge. The exclusion set
associated with plan fragment x is a collection of sets of goals. This set has the
property that if the agent elects to satisfy the goal associated with plan fragment x
through execution of x then some element of the exclusion set is a set of goals that
cannot be satisfied through action on the part of this agent. Thus a choice to execute
plan fragment x excludes some element of the exclusion set as far as this agent is
concerned. Given the conflict set for a plan fragment and knowledge concerning the
goals associated with each plan fragment which is local to an agent, it is not difficult
to compute the exclusion set for that plan fragment.

The example which was discussed above can be used to illustrate this concept as
well. Examination of the conflict set for A-a reveals that each element of the conflict
set contains either all locally known plan fragments for g3 or all local plan fragments
for g4. Thus we may conclude that execution of A-a by agent A excludes either g3 or
g4. The exclusion set of A-a is therefore [(g3), (g4)). It should be noted that the
exclusion set only deals with the impact of choosing to execute a single plan fragment.

The exclusion set exposes relationships between plan fragments and goals. It is
often desirable to detect and reason about mutually infeasible goals. The relationship
of infeasibility is a very strong one. Goal gI is (locally) infeasible with goal g2 if
all (local) plan fragments for gI exclude g2 and conversely. Once exclusion sets have
been determined, infeasibility is not difficult to detect.

The three types of relationships we have presented are all rooted in local
constraints. Conflict, exclusion, and infeasibility are essentially concepts which
would not be relevant were it not for the constraints on joint execution of plan
fragments that exist locally. Although the concept of conflict does not appear to
propagate in a meaningful manner, those involving exclusion and infeasibility do. The

3-17

key element in this propagation lies in the observation (which we have made before) that
a choice on the part of one agent to satisfy a goal through execution of a specific plan
fragment constrains the set of remaining choices that are available to other agents.

We have developed a notion of nonlocal or induced exclusion which captures the
essence of the impact which local decisions have nonlocally. In a distributed
environment, one agent does not have knowledge concerning another agent's internal
state. It specifically does not have any knowledge about resources that are not local
to it. The agent must request information about the impact its choice has on other
agents.

The induced exclusion set is incrementally built during negotiation. When one
agent (agent A) requests information about the impact of executing plan fragment x on
another agent (agent B), agent B attempts to summarize all the knowledge it has about
that impact. This knowledge is initially found in the exclusion sets of each of its
plan fragments which match plan fragment x. Initially, then, the induced exclusion set
which is built at agent A is empty. As nonlocal knowledge becomes available, this set
is augmented. Suppose that agent B knows of two plan fragments (call them plan
fragments y and z) which match plan fragment x in A. Agent B constructs a set
consisting of the conjunction of the exclusion sets (and any induced exclusion sets) for
y and z. This construction gives us a kind of transitive closure. Given sufficient
time, an agent can acquire knowledge about the system wide impact of executing each of
its plan fragments. It does so, however, without the exchange of detailed information
concerning resource availability in the system.

As before, we illustrate with the aid of our example. If agent A elects to satisfy
gl through execution of A-b, goal gI cannot be satisfied unless agent B also
participates. Agent B must choose either B-a or B-b. The conflict set (in B) for B-a
is ((B-c, B-d), (B-c, B-e)), so the exclusion set for B-a is ((g2)). Similarly, the
conflict set for B-b is ((B-c, B-d), (B-c, B-e), (B-d, B-e)), so the exclusion set for
B-b is [(g2) (g4)), meaning that agent B cannot participate in satisfying both goal g2
and g4 while at the same time participating in satisfaction of gl. Agent B transmits
the information that ((g2) (g4)) should be included in the induced exclusion set for
A-b. Through this transaction, agent A learns that its choice of satisfaction of gl
through executing A-b forces some agent elsewhere in the system to abandon either g2 or
g4. It does not, however, mean that g2 and g4 are not jointly feasible. They are
simply not jointly feasible using agent B's participation, if agent A elects to execute
A-b.

Though the concepts of conflict, exclusion, infeasibility, and induced exclusion
have been introduced somewhat informally in this report, rigorous definitions for them
have been formulated. Algorithms for determining the conflict, exclusion, and
infeasibility sets associated with a plan fragment have been developed and implemented.
In addition, mechanisms for transitive propagation have been devised, allowing an agent
to incorporate the knowledge it acquires in its local data structures and reason using
that new knowledge.

3-18

3.4.4 Multistage Negotiation

In this subsection, we describe the multistage negotiation protocol we have
developed, indicating the role which reasoning about conflict and constraints plays. We
first treat the protocol at a very high level, discussing the general strategy. We then
provide more detail as to phases of planning and the role of negotiation in each.

Multistage negotiation provides a means by which an agent can acquire enough
knowledge to reason about the impact of local activity on nonlocal state and modify its
behavior accordingly. On completion of the plan generation phase, a space of
alternative plans has been constructed which is distributed among the agents, with each
agent only having knowledge about its local plan fragments. An agent then examines the
goals it instantiated and makes a tentative commitment to the highest rated feasible set
of plan fragments relative to these goals. It subsequently issues requests for
confirmation of that commitment to agents who hold the contracts for completion of these
plan fragments.

Each agent may receive two kinds of communications from other agents: 1) requests
for confirmation of other agents' tentative commitments, and 2) responses concerning the
impact of its own proposed commitments on others. Knowledge about impact of local
actions is acquired through an exchange of induced .exclusion and infeasibility
information. The agent incorporates this new knowledge into its local induced exclusion
set and infeasibility information. It rerates its own local goals using the new
knowledge and possibly retracts its tentative resource commitment in order to make a
more informed choice. This process of information exchange continues until a consistent
set of choices can be confirmed.

Termination of the negotiation process can be done using system-wide criteria or it
can be accomplished in a diffuse manner. If global termination criteria are desired in
an application, some form of token passing mechanism can be used to detect that the
applicable termination criteria have been met. When synchronized global termination is
not required in an application, the negotiation can be terminated by an "irrevocable"commitment of resources. A node initiates plan execution in accordance with its
negotiated tentative commitment at some time after it has no pending activities and no
work to do for other agents.

When a node begins its planning activity, it has knowledge of a set of global goals
which have been locally instantiated. A space of plans to satisfy each of these goals
is formulated during plan generation without regard for any goal interaction problems.
After plan generation, each node is aware of two kinds of goals: primary goals (or
p-goals) and secondary goals (or s-goals). In our application, p-goals are those
instantiated locally by an agent in response to an observed outage of a circuit for
which the agent has primary responsibility (because the circuit terminates in the
agent's subregion). These are of enhanced importance to this agent because they relate
to system goals which must be satisfied by this particular agent if they are to be

3-19

satisfied at all. An agent's s-goals are those which have been instantiated as a result
of a contract with some other agent. An agent regards each of its s-goals as a possible
alternative to be utilized in satisfaction of some other agent's p-goal.

A plan commitment phase involving multistage negotiation is initiated next. As
this phase begins, each node has knowledge about all of the p-goals and s-goals it has
instantiated. Relative to each of its goals, it knows a number of alternatives for goal
satisfaction. An alternative is comprised of a local plan fragment, points of
interaction with other agents (relative to that plan fragment), and a measure of the
cost of the alternative (to be used in making heuristic decisions). Negotiation leading
to a commitment proceeds along the following lines.

1- Each node examines its own p-goals, making a tentative commitment to the highest
rated set of locally feasible plan fragments for p-goals (s-goals are not
considered at this point because some other agent has corresponding p-goals).

2- Each node requests that other agents attempt to confirm a plan choice consistent
with its commitment. Note that an agent need only communicate with agents who
can provide input relevant to this tentative commitment.

3- A node examines its incoming message queue for communications from other nodes.
Requests for confirmation of other agents' tentative commitments are handled by
adding the relevant s-goals to a set of active goals. Responses to this agent's
own requests are incorporated in the local feasibility tree and used as
additional knowledge in making revisions to its tentative commitment.

4- The set of active goals consists of all the local p-goals together with those
s-goals that have been added (in step 3). The agent rates the alternatives
associated with active goals based on their cost, any confirming evidence that
the alternative is a good choice, any negative evidence in the form of nonlocal
conflict information, and the importance of the goal (p-goal, s-goal, etc.). A
revised tentative commitment is made to a highest rated set of locally
consistent alternatives for active goals. In general this may involve
decisions to add plan fragments to the tentative commitment and to delete plan
fragments from the old tentative commitment. Messages reflecting any changes in
the tentative commitment and perceived conflicts with that commitment are
transmitted to the appropriate agents.

5- The incoming message queue is examined again and activity proceeds as described
above (from step 3). The process of aggregating knowledge about nonlocal
conflicts continues until a node is aware of all conflicts in which its plan
fragments are a contributing factor.

In the initial negotiation stage, each agent examines only its p-goals and makes a
tentative commitment to a locally feasible set of plan fragments in partial satisfaction
of those goals. Since each agent is considering just its p-goals at this stage, the
only reason for an agent's electing not to attempt satisfaction of some top level goal

3-20

is that two or more of these goals are locally known to be infeasible. (This
corresponds to an overconstrained problem.)

In subsequent stages of negotiation, both p-goals and relevant s-goals are
considered in making new tentative commitments. The reasoning strategy employed at each
agent will only decide to forego commitment to one of its p-goals if it has learned that
satisfaction of this p-goal precludes the satisfaction of one or more other p-goals
elsewhere in the system. If the system goal of satisfying all of the p-goals
instantiated by agents in the network is feasible, no agent will ever be forced to
forego satisfaction of one of its p-goals (because no agent will ever learn that its
p-goal precludes others), and a desired solution will be found. If, on the other hand,
the problem is overconstrained, some set of p-goals cannot be satisfied and the system
tries to satisfy as many as it can. While there is no guarantee of optimality, the
heuristics employed should ensure that a reasonably thorough search is made. The
propagation mechanisms associated with induced exclusion ensure that (given sufficient
time), each agent could gain complete knowledge about the nonlocal impact of its own
local alternatives.

3-21

3.5 Distributed Knowledge Base Management

The problem solving system we are building requires a broad range of diverse kinds
of knowledge. The knowledge base differs in many respects from that found in a typical
"expert system". Unlike most expert systems, we are concerned with solving multiple
types of problems in a geographically distributed environment. Our application domin
involves a large communications network partitioned into subregions with one site in
each subregion functioning as a central controller over its local subregion. From a
knowledge base perspective, we are interested in problem solving paradigms which lead to
effective cooperation among the subregional control centers in the absence of global
knowledge about the network. In designing the architectural framework for this problem
solving system we also identified a requirement for sharing certain domain specific
knowledge among different agents within a single subregional control center. This
section discusses our work on the design of a distributed knowledge base manager (KBM).

3.5.1 Introduction

Although our system incorporates a range of knowledge types, we restrict our
attention in this section to the body of knowledge associated with network structure,
the various types of network components and their interconnections. This structural
knowledge about the network is initially acquired as a single global knowledge base
using a specially developed tool, called GUS, which provides a convenient graphical user
interface.

GUS constructs a domain-specific centalized knowledge base by allowing the user to
instatia objects in predefined classes and create allowable relations between any two
or more objects. GUS enforces the domain-specific rules governing object-object
relations. In our case, the typical classes are subregions, sites, radios,
multiplexers, trunks, and supergroups. Rules define how a radio may be connected to a
multiplexer, how many circuits may be assigned to a trunk, etc. After all of the
objects and their interrelations have been created, the user may select an option which
breaks the single knowledge base into several local knowledge bases. Each local
knowledge base contains the information we would expect a controller at a subregion
control center to know.

The Knowledge Base Manager (KBM) is a distributed collection of software modules
(one for each subregion control center) which have the responsibility of managing this
large, distributed and shared knowledge base. During this year we have started the
initial design and implementation of the KBM. Several important research issues have
arisen and been investigated. In the next subsections, we discuss these areas, describe
our progress thus far, and conclude with a view toward future work.

3.5.2 Representational Issues in Domain Knowledge

To understand the representational issues associated with the knowledge structure

3-22

for circuits, two primary terms in telecommunications service -- trunk and circuit -
must be explained. A circuit in our domain is the complete elementary path between two
pieces of terminal equipment by which a two-way telecommunications service is provided
[6]. In other words, a circuit represents the notion that two people are talking
together, or two machines are exchanging data. A trunk is a group of equipment and
connectiols which establishes, at a higher level of abstraction, telecommunications
connectivity by providing a resource for circuits to follow. Circuits ride on channels
of a trunk; there is typically a capacity for several channels per trnk. A useful
analogy for channels on a trunk is to imagine one big pipe (the trunk), which contains a
number of smaller pipes (channels) running the entire length of the big pipe. With this
analogy k is easy to' understand why a trunk can ride channels of other trunks. The
trunk exists with or without the circuit, but this is not symmetric; a circuit cannot
exist unless it rides a trunk, or a list of trunks connected in series. The trunk
refers to "physical" connectivity, and the circuit refers to "logical" connectivity.

Although there was a clear distinction between physical and logical connectivity in
our initial design, we did not understand the need to separate the two concepts and
combined both into a single knowledge structure for circuit. The frame for a particular
circuit included certain physical information, such as the equipment endpoints and the
input numbers of the equipment endpoints in a multiplexing scheme, and certain logical
information, such as the restoration priority and status. Note that the physical
information in a circuit instance can be used to derive the trunk which it rides, but
the trunk is not explicitly defined. In fact, the set of tr iks whic. are present in a
sample communications network were not explicitly defined anywhere in the knowledge
base.

Upon further development of our distributed problem solving environment, we found
that certain problem solvers must base much of their reasoning activities in our domain
on physical connectivity at a higher level of abstraction than equipment and
connections. This higher level of abstraction involves the set of resources needed to
carry a circuit. A trunk channel is the basic unit of this resource. For example, if a
circuit has been disrupted, then the service restoral planner will attempt to restore
the circuit by rot.ing it on alternative trunks. That is, the logical connection
between two users will be reestablished by choosing a different series of equipment and
connections. While it is possible to search for these equipment objects and connection
objects, it is much more effective to deal with them on the trunk leveL

As a result of these observations, we decided to redesign portions of the knowledge
base to include trunks. This involved creating a new knowledge structure for circuit.
Our old concept of circuit which included both physical and logical knowledge is now
partitioned into trunks (physical) and circuits (logical). The trunk knowledge
structure includes the physical path of a series of equipment and connections. This
path level knowledge groups subsets of equipment and connections together, a grouping
which, as described above, is necessary in our problem solving environment. Circuits
are purely a logical entity now. A circuit instance includes the trunk or list of
trunks which it currently rides, along with the channel numbers of those trunks. Only
trunk objects contain knowledge about physical connectivity.

3-23

Although the primary reason for redefining the circuit knowledge representation was
the need for problem solvers to reason about groups of objects, an additional advantage
of this approach is the enhancement introduced to GUS as a result of implementing trunks
and restructuring circuit knowledge. GUS is more powerful and user-friendly now because
it is capable of representing and displaying knowledge at a higher level of abstraction
to the user. The purpose of the tool is to provide a mechanism for knowledge acquistion
and representation in the most "natural" setting possible. Clearly, humans do not
represent their knowledge on simply one level, such as equipment and connections. The
hierarchical levels of abstraction are used by experts and should be included in any
knowledge acquistion tooL In our domain, trunks give GUS the ability to inform the
user when an attempt has been made to include knowledge which is incomplete or incorrect
at a higher level of abstraction. For example, if the user attempts to create a circuit
without having previously created the necessary trunk, GUS recognizes the problem at two
levels. At the higher level of abstraction, a circuit cannot be created if there are no
resources to carry it. At the lower level, a piece of equipment or connection is
missing or configured improperly. GUS is thus more powerful because it can interact.
with the user on more than one leveL The real significance of this is that the user is
more likely to understand the nature of the difficulty when he is presented with more
than one description of a problem.

3.5.3 Distribution of Global Network Knowledge

In the design of a distributed problem-solving system, non-trivial problems may
arise when distributing all forms of knowledge contained- within centralized (global)
knowledge structures among a set of distributed (local) knowledge bases. Distributed
knowledge bases are similar to conventional distributed databases in that there are
different ways in which the knowledge can be distributed. These various ways may be
classified as partitioned, replicated, or hybrid.

To understand each model, it is convenient to think of the centralized knowledge
base as a file cabinet containing a number of folders. To create the distributed
knowledge base, the folders contained within the file cabinet must be moved to a set of
briefcases. In the partitioned model, each file is removed from the cabinet and placed
in a briefcase. Thus, each individual piece of knowledge (assuming the naive notion
that all knowledge is internally independent) contained within the centralized knowledge
base now exists in the distributed environment in only one of the local knowledge
bases. In the replicated model, the basic idea is that the folders are removed, copied
and then placed in a number of briefcases. That is, one piece of knowledge from the
centralized knowledge base exists at more than one local knowledge base. The hybrid
model contains some knowledge which is partitioned and some which is replicated. Our
design is based on a hybrid model of a distributed knowledge base.

Our domain specifically defines much of the manner in which we distribute the
central knowledge base into local knowledge bases. We divide the knowledge along
subregion boundaries because this represents an accurate model of real-world
activities. In the communications network, as in our distributed knowledge base model,

3-24

miuch of the centralized knowledge is strictly replicated or partitioned. but there is
also a need for hybrid knowledge representation.

The two types of knowledge which are replicated in each local knowledge base are
knowledge about generic objects and network-specific knowledge. Examples of generic
objects at the equipment and connection level include radios, digroups, supergroups, and
multiplexers. Information within each local knowledge base pertaining to a generic
radio, for instance, includes how it can be connected to other generic objects, what
alarms may exist and what each alarm means. Also included is knowledge about a generic
site, link, and subregion. This type of knowledge is necessary so that knowledge base
managers can communicate with one another. For example, when one knowledge base manager
asks another about a particular link which they have in common, each manager must be
able to understand the fundamental properties of a generic link in order to communicate
effectively. This cooperation among the knowledge base managers also requires
network-specific knowledge. The most important piece of knowledge in this category is a
global conn,.-ctivity map, which defines the overall network layout in very general terms.
- names of existing subregions and their interconnections. This type of system level
knowledge is necessary to process many knowledge base queries.

Knowledge about instances of class objects are generally partitioned, and thus are
included in only one of the local knowledge bases. For example, all knowledge about an
equipment instance is included only in the local knowledge base for the subregion in
which it is located. Knowledge about connection instances-are generally the same, with
one exception which will be discussed below. In general, equipment and connection
knowledge is partitioned because we do not expect a problem solving agent in one
subregion to know about the details of equipment and connections in another subregion.

In our domain, some knowledge must be present within two or more subregions but not
in every subregion and is thus distributed in a hybrid model. These particular
subregions all have knowledge of different aspects of an object in the centralized
knowledge base. This kind of knowledge can be described as pertaining to an object
which in some way crosses subregion boundaries. Examples are trunks, circuits, and
certain links. A link conceptually connects two radios at different sites. Because it
is a type of connection, and knowledge about the equipment endpoints of connections is
included within the local knowledge base in which the connection is contained, knowledge
about the radios at the ends of a link is included within the knowledge base in which
the link is included. This leads to the exception mentioned in the previous paragraph.
When a link connects radios in two sites which are not within the same subregion, each
subregion does not contain knowledge about the radio at the far end. Each subregion
only knows the site name and the other subregion to which the link connects. Because
each local knowledge base contains information, but not exactly the same information,
about this link, this knowledge requires a hybrid model. Similarly, each subregion
controller must know about the priority, status, and local trunk route of every circuit
which uses a local resource within that subregion. This is needed when attempting to
reallocate resources (trunks) in order to restore circuits. Each subregion must also
have knowledge about the trunks which are local resources available for the service
restoral planner in restoring a circuit.

3-25

3.5.4 Management of a Distributed Knowledge Base

Managing a distributed knowledge base combines many of the features of centralized
artificial intelligence knowledge bases with classic distributed databases. From the
artificial intelligence perspective, there should be, for example, control structures
for deductive, plausible, and inductive reasoning, techniques for knowledge acquisition,
refinement, and validation, as well as uncertainty management. Database management
systems contribute such aspects as semantic data models, concurrency control, er-or
recovery, and query processing. Note, however, that these characteristics are
interrelated and cannot always be clearly differentiated.

To understand the complexity of managing a distributed knowledge base, we extend
the knowledge base analogy presented in the previous section, where similarities were
drawn between distributing a central knowledge base into a set of local knowledge bases
and removing data folders from a file cabinet to be placed in a number of briefcases.
The purpose is to examine the differences between managing conventional distributed data
bases and the techniques for distributed knowledge base management.

If the knowledge base is not shared and not distributed, then it is managed by its
user. This is the case in most expert systems, in which there is no specific function
for knowledge base management. The need for management comes from the desire to share a
common knowledge base among several problem solving agents. Continuing the analogy from
above, this situation is modeled by having one person in charge of managing the
knowledge. That is, one person sits by the file cabinet and uses the knowledge
contained within the cabinet to answer questions from others. While he is not answering
queries, he does other routine bookkeeping such as updating the files, removing old
ones, and perhaps dealing with files which contradict each other.

After the files have been placed in separate briefcases and moved to different
parts of the country, a person is assigned to each briefcase to manage its contents.
Collectively, these people perform the tasks of the one person who had previously sat by
the file cabinet. Now, because the knowledge is distributed, each person must know how
to perform the local job of knowledge base management, as well as knowing how to
cooperate with the other managers. For example, if one of these managers were
questioned about something in the knowledge base that is not known locally, he should be
able to call upon the appropriate person - someone who is managing another briefcase -
to ask if that person is able to help.

The overall knowledge base structure as a result of moving the files to briefcases
is very similar to the knowledge base in the domain of our distributed problem solving
environment. Within a local knowledge base is a global connectivity map at the level of
subregions and connections between subregions. By interpreting that information, a
knowledge base manager can determine which other knowledge base managers exist.
"Addresses" needed to communicate with the others are also included. In performing its
tasks of managing the knowledge, a knowledge base manager may need to consult other
knowledge base managers. It does this by sending a message to the other knowledge base

3-26

manager.

Two functions of the knowledge base management system we have been most interested
in designing and implementing are a programmer's interface to the local knowledge base
and an interface between the local knowledge base and the service restoral agent.
Because the latter has been developed to the point that we can run simulations of the
circuit restoral process, we have been able to make significant improvements in the
implementation of multistage negotiation. Each of these two features of knowledge base
management will be discussed in detail

3.5.4.1 Natural Language Interface

During the execution of problem solving software, it is often difficult to
determine the effectiveness and correctncss of the knowledge base management system.
SIMULACI provides only limited screen space for each actor, so a knowledge base manager
cannot continually inform the user about its activity using screen displays. Many of.
the tests we conduct proceed rather quickly, and thus even if each knowledge base
manager could write effectively to the screen, it would require interrupting each of
these simulated parallel processes in order to provide effective user interaction. In
addition, it is inherently difficult for humans to assess parallel, distributed
processes.

In order to meet the need for user interaction with a local knowledge base, we have
developed an interface which will accept questions and provide replies based on the
content of the local knowledge base. This interface uses simple natural language
techniques so that it appears to understand very free form queries. The user need not
be familiar with the syntax and semantics of the knowledge base. We are pursuing this
type of interface because of its ease of use and eventual ability to give explanations
in English sentences.

The natural language interface is currently being used to determine the state of
the network at various times in the simulation. This subsystem of a local knowledge
base manager can answer questions about the state of a particular instance of a class of
objects by directly accessing its knowledge structure. It can also answer queries which
involve reasoning rather than simple look-up such as how might it reroute a particular
circuit based upon the current state of the local knowledge base. In the future, the
system might be developed to answer queries based upon information which is not
currently true. A query of this form might be "If link 1 failed, how would you reroute
circuit 57" Also on the horizon are the explanation facilities. Currently, only the
framework for this has been created.

3.5.4.2 Interface with Planning

One task of the knowledge base manager is that of interfacing with problem solving
agents which require access to the knowledge. The knowledge base manager must be able
to accept queries and process them in an order which is logically correct. In addition,

3-27

responses must be in a form which is understandable by the agent who requested the
knowledge. Answering a query typically involves more than simple information look-up,
instead requiring some degree of reasoning.

We have focused the development of this aspect of knowledge base management on the
interface with the service restoral planner which is responsible for restoring disrupted
circuits. In general, restoring a circuit involves cooperanon among several service
restoral agents. The basic approach involves a distributed search through all possible
subregions which could have resources available to be used for restoral of the circuit.

The procedure for rerouting a circuit is fairly complex. When a circuit becomes
disrupted, the service restoral agent for each subregion in which the circuit terminates
is notified that the circuit must be restored. To illustrate the complexity of the
problem we will discuss a circuit which has endpoints in two different subregions, and
which passes through at least one other subregion. In this case, each of the two
service restoral agents at either end of the circuit initiates, in parallel, a request.
of its local knowledge base manager for a list of available resources which could be
used to reroute the circuit locally. The response is a list of combinations of trunks
and their respective channels. The last trunk in each sequence connects to another
subregion;. thus, the service restoral agent must then cooperate with the service
restoral agent in the subregion at the trunk terminus to further the circuit toward the
distant endpoint. Upon completion of this search process for all possible circuit
restoral plans, the service restoral agents negotiate to select a single restoral plan
for each circuit --

The queries from the service restoral agent for the knowledge base manager fall
into two categories: primary and secondary. A primary query is associated with a
primary subgoal and seeks resources to reroute a circuit which originates within the
subregion. A secondary subgoal generates a secondary query for resources to reroute a
circuit coming into the subregion using a specific shared resource. For a primary
query, the service restoral agent simply knows the name or ID of the circuit; all
knowledge pertaining to that circuit is kept within the knowledge base. For a secondary
query, the service restoral agent provides the ID of the circuit, its priority, and the
channel of the particular trunk used by the circuit to enter the subregion. These
attributes were passed from the service restoral agent which generated the request for
the secondary subgoaL In either case, the knowledge base manager must respond by
providing a list of possible resources, if any are available, which could be allocated
by the service restoral agent to restore the circuit.

An important differentiation of function has been made here. The task of the
service restoral agents is to generate global plans based on resource availability and
to select plans based on negotiations over resource allocation. The knowledge base
manager serves as a bridge between the planning specific knowledge of the service
restoral agents and the domain specific knowledge about resources contained within the
the knowledge base.

3-28

3.5.5 Future Work

The current development of the knowledge base manager has concentrated on query
processing. As we continue this work by adding interfaces with other problem solving
activities, we intend to begin implementing and testing other aspects of knowledge base
management. One of these aspects is belief revision or truth maintenance. Truth
maintenance is used to control the validity of a knowledge base, particularly when new
information is introduced.

Knowledge base construction begins with the creation of a set of hypotheses upon
which new conclusions are based. In this process inconsistencies may arise which, for
instance, might imply a particular statement to be true and also not to be true. Truth
maintenance is used to logically backtrack through the knowledge to determine the source
of this inconsistency.

Performing truth maintenance in our distributed environment is particularly.
interesting because a local knowledge base certainly should be consistent and without
contradictions. However, it may not be necessary for the knowledge in the system as a
whole to be perfectly consistent. At this point in our work it is too early to
determine just how "globally consistent" our knowledge must be. We are interested in
cooperative, distributed problem solving, there are few applications in the real world
in which there are no contradictions in global knowledge. For example, in any group of
experts working together on a problem, there are likely io be inconsistencies in the
collective set of their knowledge. Yet they are usually able to work successfully
-toward a mutually satisfying solution. -A fundamental problem for distributed knowledge
based systems is to detemine the body of knowledge which should be consistent and that
which need not be in order for the system to perform effectively.

3-29

Bibliography

1. Meyer, Robert A. and Meyer, Charles, "The Role of Knowledge-based Systems in
Communications System Control," Applications of Artificial Intelligence V, Proc. of
SPIE, voL 786, 18-20 May 1987, pp. 305-3 10.

2. Adams, Gerald M., Meyer, Charles N. and Meyer, Robert A., "Machine Intelligence
For DoD Communications System Control," Conf. Record MILCOM-87, vol. 1,
19-22 October 1987, pp. 188-193.

3. MacIntosh, Douglas J. and Conry, Susan E., "A Distributed Development Environment
for Distributed Systems," Proc. Third Annual Expert Systems in Government
Conference, 19-23 October 1987, pp. 72-79.

4. MacIntosh, D. 3. and Conry, S. E., "SIMULACT, A Generic Tool for Simulating
Distributed Systems," Tools for the Simulation Profession, The Society for Computer
Simulation. San Diego, CA, April 1987, pp. 18-23.

5. Hogencamp, Brian R., GUS: A Graphical User Interface for Capturing Structural
Knowledge, M.S. Thesis, Clarkson University. Potsdam, NY, January 1987.

6. Baseline Conceptual Design for the DCOSS Data Ba e, Defense Communications
Agency, July 1985.

3-30

SIMULACT USER'S MANUAL
(Draft December 1987)

___________ SIULACr: Clarkson University (NAIC) ______

Top -of 1we p-.Tp~ ina~

*.SWhULACr GAUGESM Rm
Pmf

Eaqod1 0OwW-W42 Rom
S;.-66 ?&4-, .w Teuna

rmie R~ Ram. 1.0
NOW Wadd GCzaaw

L'=US GA1GES - OlW Wmoi Loud
C== Woid Edit

Cyds23 am= Wo"j save

Seae Fze Couma=
Sw" Mh. P Sim

T= n .Diedi

Saqp= Pakw a. uit

AR Cam Sop Nn
AR DhwawSagmm

An Kmnw Sugmma

MO&. Seidcion Pm.
MA,4GhA"NO"qArm Bo~m qa oe* lco" pma

By Douglas J. Mac Intosh

3-A- I

1. Overview of SIMULACT

SIMULACT is an environment intended to aid the development of applications involving
distributed problem solving. It is a domain independent development and emulation
facility which permits rapid prototyping, interactive experimentation, and ease of
modification of such systems.

SM.ULACT is based on a model which regards intelligent agents as semi-autonomous problem
solving agents which interact with one another by means of a message passing paradigm.
This model assumes no shared memory between agents. SIMUJLACT is a distributed system
that allows n agents to be modelled on k machines where n > k. This system is written
in Common Lisp and can run on a non-homogeneous network of Lisp Machines comprised of
both SYMBOLICS (version 7. 1) and TI EXPLORERS (version 3. 1).

1.1 System Structure

SIMULACT is a distributed system that allows n agents to be modelled on k machines,
where n > k. Each agent runs asynchronously and coordinates its activity with that of
other agents through the exchange of messages. The activities performed by each agent
are assumed to be complex, so that the parallelism is coarse grained. SIMULACT allows
the programmer to write code in Common Lisp as though there were as many Lisp machines
in the network as there are agents in the distributed system being developed.

As is evident from Figure 1, SIMUALACT is comprised of four component types: Actors,
Ghosts, Directors, and an Executive Direc . Actors are used to model agents in the
distributed environment. Each Actor type is individually defined, and used as a
template to create multiple instances of that Actor type. An Actor is a self contained
process which runs in its own non-shared local environment. Although Actors run
asynchronously, the elapsed CPU time for each actor never varies by more than one "time
frame".

Ghosts are used in SIMULACT to generate and inject information into the model that would
naturally occur in a "real" distributed expert system. They do not represent any
physical component of the model For example, external inputs (alarms, sensors, etc.)
affecting the state of the system can be introduced via Ghosts, as well as inputs that
reflect the "side effects" of the systems activities. Ghosts can also be used to inject
noise or erroneous information into the system so that iue concerning robustness can
be easily investigated. The performance of an expert system can be monitored in
subsequent runs through the simple modification of these Ghosts.

Due to the similarities between Actors and Ghosts, we refer to them as Cast members.
Each Cast member has a unique "stagename" and a "mailbox" used by the the communication
facility in routing messages among members. Each also has a "script function" which
defines its high level activity.

3-A- 2

DIRECTOR

ACTOR ACTOR GHOST GHOST
060e n 00 fn

a) Host Level Structure

EXECUTIVE DIRECTOR

DIRECTOR I DIRECTOR k

GCTO am=5T Q~ ACTOR ACrOft QIOS GHOST

Figure L. SIMULACT's Modular Structure

The control strcture residing at each host processor in SIMULACT's distibuted

environment is known as the Director. The Director is responsible for controling the

3-A,. 3

activities of the Cast members at that site, and for routing messages to and from these
members. These activities are assigned to the Grip and Messenger respectively. The
responsibilities of the Grip range from setting up and initializing each Cast member's
local environment to managing and executing the Actor and Ghost queues. The Messenger
only deals with the delivery and routing of messages. When a message is sent, it is
placed directly into the Messenger's "message-center". During each time frame, the Grip
invokes the Messenger to distribute the messages. Whenever the destination stagename is
known to the Messenger, the message is placed in the appropriate Cast member's mailbox.
Otherwise, it is passed to the Executive Director's Messenger and routed to the
appropriate Host.

There is one Executive Director in S]MULACT which coordinates all Cast member activities
over an entire network. The Executive Director provides the link between Directors
necessary for inter-machine communications, directs each Grip so that synchronization
throughout the network is maintained, and handles the interface between the user and
SIMULACT.

1.2 Concurrency Control in SIMLACT

Concurrent execution of n Actors on k machines (n > k) is emulated through the
imposition of a "time frame" structure in execution. A time frame cycle breaks down to
three fundamental parts: invocation of the Ghosts, the distribution of mail by the
Messengers, and invocation of the Actors. For SIMULACT distributed over two hosts,
Figure 2 depicts a reprsentation of two time frames.

At the start of the first time fi-ame, the Executive Director notifies both Directors to
begin executing Ghosts. (This models the occurrence of events in the world external to
the distributed system.) At the conclusion of the Ghost frame, each Director
automatically invokes its Messenger. The Messenger distributes all messages which were
generated during the current Ghost frame, as well as all those resulting from the
previous Actor frame. Mail destined for Cast members residing on the same host
processor is placed in the appropriate mailboxes. The solid line extending from each
Director's Messenger represents the transfer of non-local mail to the Executive
Director's Messenger. In order to reduce network overhead, this transfer is done in the
form of a single message. This communication always occurs, even if there are no
messages to distribute, as a synchronizing mechanism for the time frame so that Actors
cannot "run away". After sending this message, each Director enters a wait state until
the Actor frame directive is received from the Executive Director. The dotted line
directed our of the Executive Dirctor's Messenger represents the possible distribution
of inter-machine mail prior to sending the Actor frame instruction. The Executive
Director's Messenger is invoked immediately following the receipt of the last Director's
Messenger communication.

Upon receiving an Actor frame command from the Executive Director, the Director's
Messenger is invoked to distribute any inter-machine messages that may have been
received. Next, each Actor is allowed to run for one time slice (time frame). At this

3-A- 4

point the Execuive Director immediately enters its next time frame cycle, sends the
Ghost ft=~ command, and waits for all the Dwwetor Messengers to send their next
synchronizing signaL Again in the second time frame of Figure 2, it is Director 2
which require the most time to run.

DIRECTOR 1 EXECUTIVE DIRECTOR DiRECTOR 2

ESIN GHOSTS

ACTOS

GHOSTS

MESSENGECR

GHOSTS

* MIESSENGCR

ACTORS

Figure 2. SEMLACT's Time Frame

3-A- 5

2. Getting Started in SIMULACT

The SIMULACr environment is consuucted from both domain independent and domain
dependent code. The domain independent code is comprised of system code that is used to
create the basic shell. The user then customizes the environment by loading application
code. Since SIMULACT is a developmental tool, it can be expected that application code
will be revised on a regular basis. For these reasons, SIMULACT's sytem code is
typically placed in its own directory. Furthermore, it is recommended that each user
developing the system keeps their application code in separate directories.

2.1 Loading the SIMULACT Distribution Tape

SIJULACTis a distributed environment capable of running on a non-homogeneous network of
Lisp machines. The distribution tape contains software capable of running on both
SYMBOLICS (version7. 1) andTIEXPLORERS (version 3. 1). Dependingonyourown network
configuration, you will need to select one machine to down load the distribution tape
to. Typically this machine is the file server for the network. Refer to section 2.1.1
for a SYMBOLICS host or section 2.1.2 for a TI EXPLORER host.

2.1.1 Down Loading to a SYNBOLICS

Down loading SIMULACr to the SYMBOLICS is a two step process; the first step requires
you to read in the contents of the distribution tape, while the second step creates your
own SIMULACT system. Before loading the distribution tape, you need to decide where to
place SIMULACr's sytem code. Typically this is placed in the top level directory
">SIMULACT>'.

To load SIMULACT from the distribution tape, type the following command into the Lisp

Listener Window:

Command: (tape:can'y-load)

You will see something similar to:

Carry Dump made by DOUG.
Dump taken at 12/21/87 14:55:22.
Dumped on machine Blackfriars.
Dumped: Blackfriar:>SLTtLACT>*.*.Newest.
Load Blackfriars:>SIMULACT>some-fle into YOUR-HOST:>YOU>some-file (Y, N, 0, or A)

At this point type 0 at the keyboard to select "Other". Now enter your chosen directory
pathname for SIMLTLACT and press Return. When loading the next file a second "load"
query will appear. At this time select option "All" by typing A at the keyboard. The
remaining files on the carry tape will now be loaded without any further queries.

At this point you are now ready to create the SIMULACT system(s). See section 2.2

3-A- 6

"Creating The SIMULACT System".

2.1.2 Down Loading to a TI EXPLORER

Down loading SIMULACT to a TI EXPLORER is a two step process; the first step requires
you to read in the contents of the distribution tape, while the second step creates your
own SIMULACT system. Before loading the distribution tape, you need to decide where to
place SIMULACT's sytem code. Typically this is placed in the top level directory
"SIMULACT;".

To load SIMULACT from the distribution tape, enter the EXPLORER's Backup System by
pressing select-B. Place the distribution tape in the tape drive and complete the
following steps:

1. Prepare the tape by mousLig on the "Prepare Tape" menu item. Now select the
"Carry Tape Format".

2. Load the tape by mousing on the "Load Tape" menu item.

3. Now select the "Load Carry Tape" menu item. At this point you will need to
specify where to load the contents of the tape. Enter your chosen directory
pathname.

When the "Load Carry Tape" option- has completed, you are now ready to create the

SIM ULACT system(s). See section 2.2 "Creating The SIMULACT System".

2.2 Creating The SIMULACT System

Both SYMBOLICS and TI EXPLORERS allow large software projects to be defined as
"systems". If the operator installing SIMULACT is not familiar with the system concept
they should refer to their Lisp machine's manual (SYMBOLICS - Manual 4, "Defining A
System". TI EXPLORER - Programming Concepts Manual, "defsystem and make-system".).

A SIMULACT system is generated automatically by the function create-a-simulact-system.
In order to invoke this function you must first load file "MAKE-SIM" from the >SIMULACT>
directory.

create-a-simulact-system name application-directry Function
Execution of this function creates a SIMULACT system called name. The defsystem
files "name.isp', "name.system", and "name.translaion" are automatically created
and stored by this function. create-simulact-system is sensitive to whether you
have a SYMBOLICS or TI EXPLORER environment and will tailor your system files
appropriately.

The application-directory argument specifies the default directory to be used when
accessing application code.

3-A- 7

2.3 A Demonstration of Your SIMULACT Environment

After completing the previous steps you are ready to bring up and test your SIMULACT
environment. The first thing you need to do is to make the SIMULACT system. The
command to do this for a SYMBOLICS is:

Load System "name"

where name is the name you called the system when creating it. For a TI EXPLORER
execute the following:

(make-system "name" :nowarn)

Again, name is what you called the SIMULACT system when creating it.

Youarenowready torun SIMULACr. Type (SIMULACT) in theLisp Listenerandmomentarily
the SIMULACT's main window frame will appear (see figure 3). Shortly thereafter the
SIMULACTInirializaion window will appear in the command pane. Mouse on "Old World
Load" to bring up a menu of SIMULACT Worlds. Now use the mouse to select the demo you
would like to view. After the demo world is loaded in, mouse on "Run" in the Mode
Select Pane to start the demo.

_SIMTULACT: Crkson University (NAIC)

-0 sLACr LAU0 . Ram

Maed.1m Moc 42 GN
Smnatim Moia: m Tamimm
Tim.PiRod= 1.0

New Wadd Cknamii
-*- urn GAUGES-- Old Wad Load

CmM Wadd Edit

Cyde: 23 Cwz Wagd Save

Fomk & poke

Gd. P...
Bm q"fqae COMMIdPw Stim Dissr PFr

Seim r- MINZIMSfd

Tum On Diaes
Tin. I
T= Off Dime

SpMi Pdae VPuidity

AIL Con StWg Nom
An Dia Sagin

ALL 1mw. Sngm

ae SaLcsMonPow
Actr nGhosDiy Arum 5oinoff Mo'de x1Acl Pme

Figure 3. SIMULACT's Main Window Frame

3-A- 8

3. User Interface Facilities

3.1 The Mail Facility

The Mail facility provides the programmer with three mechanisms for communication among
Cast members: memos, futures, and future streams. In general, a packet of information
is sent from one Cast member to another, addressing the target member by its stagename.
The format of these packets is not specified by SIMULACT. It is left up to the user to
formulate a syntax that is convenient. in the context of the system being developed. A
packet may be any symbolic Lisp form that can be evaluated in the targetted Cast
member's environment.

A Cast member has a mailbox and afuurebox used to collect incoming memos and futures.
It is the responsibility of the programmer to periodically check these boxes for mail
using the memos-p and futures-p functions.

memos-p Function
memos-p returns t if one or more memos are present in the Cast member's mailbox,
otherwise nil.

futures-p Function
futures-p returns t if one or more futures are present in the Cast member's
futurebox, otherwise nil.

3.1.1 Memos

Sending a memo is the simplest mechanism one Cast member can use to communicate with
another. It is a "one way" transfer of information that automatically appears in the
destination Cast member's mailbox at the beginning of the next time frame. Memos are
sent and retrieved by a Cast member using the send-memo and receive-memos functions
respectively.

send-memo destination memo Function
Creates, initializes, and sends an instance of the sim-io:memo flavor to the Cast
member whose stagename is destination, destination must be a Common Lisp string.
memo may be any symbolic Lisp form that can be evaluated in destination's local
environment. The source and memo-time instance variables of sim-io:memo are
automatically set to the stagename and current elapsed time of the sending Cast
member. send-memo returns the created object.

If both source and destination Cast members reside on the same Lisp machine, they share
one instance of the sim-io:memo flavor. In order not to violate the underlying
assumption that each Cast member has an independent environment, the instance variables
of sim-io:memo are not settable.

receive-memos Function
Returns and clears the contents of a Cast member's mailbox. If mail is present

3-A- 9

this function returns a list of memos, otherwise nil. A memo is an instance of the
sim-io:memo flavor.

The exuaction nf memo content can be done in a number of varous ways. The following
are methods of the sim-io:memo flavor available to the programmer for this purpose.
Functions that perform similar operations to those of these methods, but may be applied
to a more general mail-object (memo, future, or future stream) are also inuoduced.

:list of sim-io:memo Method
Returns a list of four elements, (destination source memo-time memo).

:destination of sim-io:memo Method
Returns the destination Cast member's stagename.

destination mail-object Function
Returns the value of mail-object's destination instance variable, mail-object may
be an instance of sim-io:memo or sim-io:future.

:source of sim-io:memo Method
Returns sending Cast member's stagename.

source mail-object Function
Retuns the value of mail-object's source instance, variable, mail-object may be an
instance of sim-io:memo or sim-io:future.

:memo-time of sim-io:memo Method
Returns the the time that this memo was sent.

memo-time mail-object Function
Returns the time mail-object was sent. mail-object may be an instance of
sim-io:memo or sim-io:future.

:memo of sim-io:memo Method
Returns the value of the memo instance variable. This is the packet of information
transferred from the source Cast member to the desanation member.

memo mail-object Function
Returns the value of the memo instance variable of mail-object. This is the packet
of infomation sent from the source Cast member to the destination member.
mail-object may be an instance of sim-io:memo or sim-io:future.

3.1.2 Futures And Future Streams

Many communications between Cast members take the form of requests for information.
Using the send-memo function requires that the sending member sort its mailbox to
retrieve the reply to a request after it has been received. Futures provide a Cast
member with a direct mechanism for sending a message that returns a result. A memo sent

3-A- 10

using the send-future function returns an instance of the sim-io:future flavor. After
the memo has been received and processed, the result is transparently routed back to
this object by SMULACT. The sending Cast member uses this future to determine when the
result is available, and to extract it after it has arrived.

send-future destination memo Function
Creates, initializes, and returns an instance of the sim-io:future flavor. The
source and memo-time instance variables are automatically set to the stagename and
current elapsed time of the sending member. A second instance, and duplicate copy
of this future is placed in destination's futurebox at the beginning of the next
time frame. This object is held on to, and periodically tested by the sending Cast
member to determine when a reply to memo is received. When available, it then can
be extracted from this object.

In some cases, requests for information may not have one definitive reply. Instead,
pieces of information may be returned at different times. SIMUJLACT allows two Cast
members to establish a future stream between themselves for returning results over
time. In this case, the send-future-stream function is used instead of send-future.

send-future-stream destination memo Function
Creates, initializes, and returns an instance of the sim-io:future flavor. This
instance has its source and memo-time instance variables set to the stagename and
current elapsed time of the sending member. At the beginning of the next time
frame, a second instance and duplicate copy of this future stream is placed in
destination's futurebox. This object is retained, and periodically tested by the
sending Cast member to determine when one or more replies to memo have been
received. These replies are then extracted one at a time from the object.

Sending a future or future stream uses two instances of the sim-io:future flavor. The
sending Cast member's instance is referred to as the master, while the targetted
member's is known as the slave. Also, since futures and future streams are instances of
the same flavor, we use one set of functions and methods for both. Therefore, some
operations perform slightly different tasks depending on whether a future or future
stream is referenced. These differences are pointed out. Likewise, some functions and
methods perform specific master or slave operations.

:future-state of sim-io:future Method
Returns t if a reply has been received from the targetted Cast member, otherwise
nil.

future-state future-object of sim-io:future Function
Returns t if a reply has been routed back toffuture, otherwise nil.

:reply of sim-io:future Method
Returns two values: the reply sent back to the future and the time the reply was
sent. If no reply has been received, the two values returned are nil and nil. For
futures, this method is non-destructive and will return the same values if used a

3-A- II

second time. Likewise, the fuaure-state operation wil continue to return t. For
future streams this method is destructive. Each time it is used, it removes the
current reply and reply-time from the stream. The future-state operation is then
used to determine when the next reply is available.

future-reply future-object of sim-io:future Function
Returns two values: the reply sent back to the future and the time the reply was
sent. If no reply has been received, the two values returned are nil and nil. For
futures, this function is non-destructive and will return the same values if used a
second time. Likewise, the future-state operation will continue to return t. For
future streams this function is destructive. Each time it is used, it removes the
current reply and reply-time from the stream. The future-state operation is then
used to determine when the next reply is available.

:destination of sim-io:future Method
Returns the targetted Cast member's stagename.

:source of sim-io:future Method
Returns sending Cast member's stagename.

:memo-time of sim-io:future Method
Returns the time that this memo was sent.

:reply-time of sim-io:fluture Method
If a reply has been received, :reply-time returns the time it was sent, otherwise
nil. For future streams this is the sending time for the current reply.

reply-time future-object Function
If a reply has been routed back to future-object, the time it was sent is returned,
otherwise nil. For future streams this is the sending time for the current reply.

receive-futures Function
Returns and clears the contents of a Cast member's futurebox. If futures are
present this function returns a list of futures, otherwise nil. A future is an
instance of the sim-io:future flavor.

:memo of sim-io:future Method
Returns the value of the memo instance variable. This is the packet of information
transferred from the source Cast member to the destination member.

:send-future-reply reply &optional rest of sim-io.fiaure Method
For futures, reply is routed back to the coresponding master and reply is
returned. Future streams can send one or more replies back to the master. A
single reply or a list of replies is returned.

send-future-reply future-object reply &optional rest Function
For futures, reply is routed back to the coresponding master and reply is

3-A- 12

returned. Future streams can send one or more replies back to the master. A
single reply or a list of replies is returned.

Futures and future streams use send-memo to route the communications that occur between
the master and slave components. This requires the Messenger to make an entry into its
address book for each master and slave. For futures, SIMULACT automatically removes
these entries when the slave sends its reply to the master. It is up to the user to
close a future stream when its usefulness has expired in order to help reduce Messenger
overhead. The following functions and method are provided for this reason.

:close of sim-io:future Method
Sending this message to a future stream's master or slave closes the stream
permanently and returns :closed. No further replies can be sent. All other future
stream operations remain enabled.

close-future-stream future-stream Function
This function closes future-stream, returns :closed, and prohibits the sending of
any further replies. All other future stream operations remain enabled.

:mode of sim-io:future Method
Returns :closed if the future stream has been closed, otherwise :master or :slave
is returned.

future-mode flaure-strewn Function
Returns fiaure-sreams mode. If fure-strewn has been closed, :closed is
returned, otherwise :master or :slave is returned.

Note that eithe the master or slave can close the stream at any time. It is up to the
user to be aware this possibility, and to incorporate this feature in its use of future
streams. For instance, Actor A may request information from Actor B by opening a future
stream. Sometime later Actor A may choose to close this stream when a sufficient number
of replies have been received to satisfy the request, or if the need for this
information no longer exists. In either case, it is inefficient for Actor B to continue
processing this request. Therefore, it makes for good programming practice for Actors
to periodically test the mode of future streams in order not to waste their resources on
a closed stream.

A slave may also close a stream using the same protocol as above, providing that the
master periodically checks the mode in order to avoid situation of waiting for a reply
from a closed stream. Note that all replies sent prior to closing the stream are
retrievable in the usual manner. A slave could also notify the master that the stream
has been closed by sending a reply stating this fact prior to closing the stream.

3.2 The Support Package Facility

The Support Package facility was developed to reduce memory requirements and to
facilitate modularity in application code. The underlying assumption that each Cast

3-A- 13

member has an independent environment implies that multiple copies of code are required
for agents performing identical tasks. A Support Package reduces this redundancy
requirement by allowing several Cast members to access the same copy of code from within
their respective environments.

As in any shared memory system, an integrity violation would occur whenever a Support
Package accesses or alters global information. (Global in the sense that more than one
Cast member can access the same information.) To guard against these problems, SIMULACT
detects the potential occurrence of integrity violations and warns the user when a
Support Package tries to instantiate a global variable. Ideally, Support Packages
should contain purely functional code. However, this restriction would severely
constrain the code that can be placed into Support Packages.

There are two ways to use Support Packages other than for purely functional code. One
way is for a Cast member to pass a local data structure as an argument to a Support
Package function. If that function is "for effect", the result could then be bound
appropriately. The other method requires the application programmer to use SIMULACT's
simset functions. Basically, the simset functions allow Support Package code to
directly alter a global variable that is present in each of the Cast member packages.
(Here, global means that each Cast member's environment has its own instance of this
global variable.) These functions are straightforward to use, but are built from
concepts pertaining to Common Lisp's package system. Therefore, an overview of the
package system will be given before introducing these functions.

3.2.1 An Overview of Common Lisp's Package System

Common Lisp's package system [Steele 1984] allows multiple name spaces for symbols, thus
allowing for symbols with the same name to exist in different packages. A package is a
data structure that maps symbol names to symbols. Only one package can be current at a
time, and this package is bound to the variable *package*.

A symbol is a data object that has a separate slot (cell) for its print name, value,
definition, property list, and package. A print name is a string used to identify the
symboL Since symbols are most commonly used to represent variables and functions in
Lisp programs, they have two distinct cells for this purpose. When used as a variable,
its value is stored in the value cell. Likewise, a function's definition is held in the
definition cell. The property list allows the user to give symbols other attributes as
well, without requiring a separate cell for each attribute. Instead, the attribute's
name and value are placed into the property list. A symbol can have an unlimited number
of attributes. When an attribute is accessed, the property list is searched for its
name and the corresponding value returned. When a symbol is created, the package it
belongs to is placed into the package cell. This value is referred to as the home
package for this symbol.

The package system was created to allow modular programming in Lisp, without concern
about conflicts between symbol names. For instance, a programmer coding in package

3-A- 14

pkg-a could declare *x*, Oy*, and *z* to be global for his own use. Meanwhile, a second
programmer could declare *x* to be global in package pkg.b, without being aware of the
existence of *x* in package pkg-a.

Since modular systems need to interface between modules, symbols in packages are
classified as either external or internal. An external symbol is intended to be used by
other packages, while internal symbols are not. Symbols are usually internal until made
external using some export command.

External symbols can be accessed by other packages using its qualifted name or through
package inheritance. A symbol's qualified name is constructed by appending the symbol's
home package name to its print name separated by a colon. For example, if *x* in
package pkg-a is an external symbol, it can be accessed in package pkg-c via the
qualified name pkg-a:*x*. If the symbol *x* in package pkg-a was inherited by package
pkg-c, it can be accessed by just its print name. Note that a name conflict would
result if package pkg-b tried to inherit *x* from pkg-a, since *x* already exists in
pkg-b.

There is no way for a package to inherit the internal symbols of another package; a
package can only inherit external symbols. However, internal symbols can be accessed
through the use of the double colon qualifier. For instance, if *z* is internal to
pkg-a, pkg-b can access it by pkg-a::zt.

When one package inherits the. external symbols of another, it is said to use that
package. All packages used by a package are placed into that package's use-list. When
a symbol is being "looked up" by a package, the package first searches through all
external and internal symbols belonging to it. If the symbol is not found, the external
symbols of the packages found in the use-list are searched until the symbol is found.
If package pkg-a uses pkg.b, and pkg-b uses pkg-c, pkg-a does not inherit pkg-c's
external symbols. This is because only pkg-b is placed into pkg-a's use-list, and not
pkg-c. Also, it is possible and sometimes necessary for pkg-a to use pkg-b, and for
pkg-b to use pkg-a.

3.2.2 Support Packages Restrictions

Support Packages are used to reduce memory requirements for systems where Cast members
perform common tasks. They are also used to facilitate modularity in programming in
exactly the same manner the package system does in Common Lisp. In fact, a Support
Package is a Common Lisp package with a few additional constraints placed on it.

Global variables are not allowed in Support Packages in order to keep each Cast member's
environment independent. If during the initialization of a Support Package, a defvar or
some other function that instantiates a global variable is used, SIMULACT interrupts the
current world initialization process and reports this problem to the user. SIMULACT
also checks the validity of each Support Package each time its simulation mode changes.
This ensures the detection and notification of any instantiated global variable in a

3-A- 15

Support Package that may be incurred during the simulation.

Although global variables are not allowed in Support Packages, constants are. The
programmer may use defconstant to instantiate a symbol that is a constant and accessible
to any Cast member using that package. This is very useful method for representing
static information about the system. This allows information of this sort to specified
in one place, which makes the programmer's job much simpler when this information must
be changed.

defconstant variable iniidal-value &optional docunentation Special Form
Declares variable to be a constant in the Support Package. initial-value is
evaluated and the result is bound to variable. It is an error if any further
binding to variable is attempted.

documentation if used should be a string and is accessible via the documentation
function.

Note that defconst cannot be used in place of defconstant. defconst allows the value of
the constant to be changed without generating an error. SIMULACT will detect the use of
defconst.

The only remaining restriction placed on Support Packages is that all symbols intended
to be used by Cast members must be external. SIMULACT requires that at least one symbol
in a Support Package is made external via the export function. If not the user is
warned of this deficiency.

export symbols Function
The symbols argument may be a single symbol or a list of symbols. The symbols
exported by this function become external symbols of the support package. Note
this is not the same export function found in any other package, since the export
symbol is shadowed in all Support Packages.

When a Cast member uses a Support Package, the Support Package is placed into the Cast
member's package use-list. This allows Cast member code to access these external
Support Package symbols using print names or qualified names. For systems with large
number of symbols, Support Package symbol "look up" can be more efficient using the
symbol's qualified name.

3.2.3 The Simset Functions

SIMULACT's simset functions allow the programmer to write Support Package code that can
directly access and alter the local environment of a Cast member. There are two
requirements the programmer must keep in mind in order to use Support Packages in this
manner. First, all data structures referenced by this code must exist in each Cast
member's environment. Secondly, when these dam structures are referenced by Support
Package code, the programmer must use the simval and simset functions where symeval and
set (or setq) would normally be used.

3-A- 16

The principle behind the simset functions is based on the fact that each Cast member's
environment is contained its own package. This means that when Support Package code is
accessed by a Cast member, the current package is the calling member's package. The
simset functions use the current package to access the appropriate data sructures
referenced in its code.

As an example, consider a simple black board application with two Actors, A and B.
During Actor initialization, SIMULACT places all of A's symbols in package actor-i and
B's symbols in actor-2. Both Actors use the Support Package black-board, which contains
the black board code. This code assumes each Actor has two global variables: *bb* and
agent-name*. The Support Package function make-black-board will be used to set *bb* to
an instance of the black-board flavor, while *agent-name* is initialized directly from
an initialization file.

Below is a sample of how this system could be implemented using the following four
files: BB-SUPPORT, BB-ACTOR, BB-ACTOR-1,'and BB-ACTOR-2. The code in
BB-SUPPORT defines the black board system and is loaded into the black-board Support
Package. In general, Cast members who use Support Package code have portions of their
environment structured the same. In this case, file BB-ACIOR contains this common code
and is loaded into both Actor environments. The remaining two files contain code
specific to each actor, thus BB-ACTOR-I and BB-ACTOR-2 are loaded into packages actor-I
and actor-2 respectively.

;;;File: BB-SUPPORT.ISP. 1 Created 6/9/87 19:13:55

(defflavor black-board ((name (simval '*agent-name*))
(in-queue nil)
(out-queue nil)

0))0))

(defun make-black-board ()
(simset '*bb* (make-instance 'black-board)))

(export 'make-black-board)

;;;The remaining code

3-A- 17

;;; File: BB-ACTOR.LISP.1 Created 6/9/87 19:16: 11

(defvar *bb*)

(defvar *agent-name*)

(make-black-board)

The remaining code ...

;;; File: BB-ACrOR-1.LISP.1 Created 6/9/87 19:19:41

(setq *agent-name* "BB System A")
;;; The remaining code

;;; File: BB-ACTOR-2.LISP.1 Created 6/9/87 19:19:58

(setq *agent-name* "BB System B")
The remaining code ...

If we look at the definition of make-black-board in BB-SUPPORT, we can see why simset is
necessary.

(defun make-black-board ()
(simset '*bb* (make-instance 'black-board)))

This function will be used by both Actors A and B to perform the following operations:

(setq actor- 1::*bb* (make-instance 'black-board))
(setq actor-2::*bb* (make-instance 'black-board))

The simset function is able to perform these operations because each Actor resides in
its own package. Furthermore, when simet is called the variable *package* is bound to
the calling Actor's package. This allows simset to intern the *bb* symbol in the
current package and set it to the appropriate value. Likewise, simval interns its
argument in the current package and returns its value. This is how the name instance
variable of the black-board flavor is set to the correct agent name (*agent-name*).

3-A- 18

simset variable value Function
When simset is called, the current package is the calling Cast member's package.
variable is interned in the current package and bound to value. value is returned.

simval variable Function
When simval is called, the current package is the calling Cast member's package.
variable is interned in the current package and its value is returned.

simvar variable Function
When simval -is called, the current package is the calling Cast member's package.
variable is interned in the current package and returned.

In order to implement this example without using a Support Package, each Actor package
would be required to have its own definition of the black board system. This could be
achieved by simply loading a file similar to BB-SUPPORT into each Actor package. This
keeps the black board system modular, making updates to it straightforward.

3.3 The Peek And Poke Facility

The Peek and Poke facility can be invoked at any time when running SIMULACT as a
monitoring and debugging tool It allows the user to enter the local environment of any
Cast member residing on any host throughout the network. Any part of this local
environment can be examined or changed at the discretion of the user.

Peek and Poke is invoked by mousing on the Peek & Poke item in the Executive Director's
Mode Pane,. This action causes a menu displaying all host names to appear in the Command
Pane (see Figure 4.a). After selecting the desired host, a second menu pops up
displaying all Cast names known to that host (Figure 4.b). When the Cast member of
interest is selected, the Peek and Poke window is exposed on top of the Actor and Ghost
Display Area.

The Peek and Poke window is similar to the Lisp Listener, in that it executes a basic
read-eval loop. Lisp forms are typed in at the keyboard and evaluated in the selected
Cast member's top-level environment. The result is returned to the Peek and Poke
window.

Error handling by the Peek and Poke facility is not interactive. When errors occur they
are reported to the window and control is returned bacz to the read-eval loop. However,
some edit type errors are detected prior to evaluation, which can be corrected by the
user.

3-A- 19

SIMULACT: Select Host To Peek & Poke

BLACKFRIARS ODEON
GLOBE NO SELECT

a) Select host menu

SIMULACT: Select Cast Member To Peek & Poke

CANTON POTSDAM
OGDENSBURG MADRID
MASSENA WADDINGTON
LISBON NORWOOD

b) Select Cast member menu

Figure 4. Peek And Poke Window Generation.

3.3.1 An Example Of The Peek And Poke Facility

Suppose we are developing an expert system which is designed to route local telephone
calls through a small number of neighboring communities. The exact path each call takes
is dependent upon the availability of resources that each community has, as well as the
current distribution of phone traffic.

In our representation of the system, we model each town with one Actor. There is a
knowledge base associated with each town that is used to record and retrieve information
about the current status of the town and over all network. Each Actor environment binds
this knowledge base to the variable *kb*.

We have just completed a preliminary model and during our first run we discover a
problem. It seems the town of Madrid is not receiving its share of traffic. We suspend
execution and enter Madrid's environment using Peek and Poke. We quickly determine that
Madrid's knowledge base was initialized incorrectly, since it responds nil to the
:available-resources query. At this point we suspect an error in its initialization
file and exit SIMULACT to correct it. Figure 5 shows the actual methodlogy used in
determining the source of the problem.

3-A- 20

SIMULACT: PEEK AND POKE FACILHTY (Cast Member: MADRID)
<Type EXIT to continue>

Command: (send *kb* :name)
MADRID

Command: (send *kb* :number-of-calls)
0

Command: (send *kb* :available-resources)
NIL

Command: exit

Figure 5. An Example Of Peek And Poke Used As A Debug Facility.

3.4 The Diary Facility

The Diary facility can be used as a debugging tool, or simply as a mechanism for post
mortem analysis of system behavior. There are three levels of Diaries, all of which may
be independently active. The Executive Director's Diary, when turned on, records all
inter-machine messages handled. A Director's Diary records all inter-machine
communications involving itself, along with the local message activity between its
resident Cast members. The last type of Diary is at the Cast member level. When
activated, a Cast member's Diary records its own message activity, and all screen
activity initiated via the typical print and format functions.

When a Diary is activated, a corresponding file is opened in the SIM-WORLDS; directory.
The default name for this file is "stagename.DIARY", where stagename is the stagename of
the object for whom the Diary is being created. In all but one case, the user is asked
to confirm the default file name or enter a different one. The exception being when a
Diary is created during an "Old World Load".

There are three mechanisms for activating Diaries. First, during a 'New World
Generation" the initialization menu for the Executive Director, the Directors, and the
Cast have an entry to turn "On" or "Off" Diary Generation. Similarly, during a "Current
World Edit", each edit menu has this same option. The remaining mechanism for turning
on Diaries is invoked by mousing on the Turn On Diaries option of the Mode Selection
Pane.

When the Turn On Diaries item is selected, a tv:multiple-choose menu pops up in the
Command Pane. This menu contains the stagenames of possible candidates whose Diaries

3-A- 21

are not currently on. Each entry in this Dia y menu is mouse sensitive and is
highlighted when selected. Mousing on the do it option turns on the corresponding
Diary for each highlighted item. Selecting the All option will turn on all Diaries just
as if each item in the menu was highlighted prior to mousing on Do it. The Abort
option exits this menu without turning any Diary on.

Diaries can be turned off in a similar fashion to turning them on. "Current World Edit"
can be used to set the current state of Diary Generation to "Off' when editing, or the
Turn Diaries Off choice in the Mode Selection Pane can be moused to generate a pop up
menu of all Diaries. Again each item in this menu is mouse sensitive allowing the user
to specify which Diaries to terminate.

3.4.1 An Example Of The Diary Facility

As an example of the Diary facility, consider the situation where Actor "ACTOR-i"
resides on one host, and Actor "ACTOR-2" resides on another. Suppose at time 842
(millieconds) ACTOR- I sends ACOR-2 a memo, which is the first interaction between Cast
members in the emulation. The following is the Diary for ACTOR-2:

3-A- 22

;;;File: ACTOR-2.DIARY Created 8/23/87 19:13:55

SIMULACT's Diary Facility

:STAGENAME "ACTOR-2"
:ALIAS-NAMES NIL
:CAST-TYPE ACTOR
:SUPPORT-PACKAGES NIL
:DIARY-FLAG T
:DIARY-NAME "ACTOR-2.DIARY"
:TIME-FRAME 1000
:SCRIPT-FUNCrION BASIC-ACTOR
:INIT-FUNCTION NIL
:INIT-FILES ("ACTOR")

<<Receiving memo at 1000>>
Destination: "ACTOR-2"
Source: "ACTOR-I"
Memo time: 842
Memo: "ACTOR-i :STATUS T"

<<Renieving memo at 1033>>
Destination: "ACTOR-2"
Source: "ACTOR-I"
Memo time: 842
Memo: "ACTOR- i :STATUS T"

The first portion of this Diary contains ACTOR-2's biography, which is a description of
ACTOR'2's inidalization as specified by the programmer. Information such as the
Actor's stagename and script function can be very useful to help identify which agent
this Diary belongs to, as well as providing some insight to its overall functionality.

Immediately following the biography is a log ACTOR-2's message activity. This log shows
that at time 1000 (milliseconds), ACTOR-2 received a message from ACTOR-i. Note that
ACTOR-i sent this memo at time 842. The delay is a prevalent because SIMULACT only
distributes mail between time frames. Although this memo was received at time 1000, it
can be seen that ACTOR-2 did not retrieve it until time 1033. Remember, it is up to the
application code to periodically check its mailbox (memos-p) for mail, and then to
retrieve it when suitable (receive-memos).

3-A- 23

This next Diary is at the Director level, and describes ACTOR-2's Director:

;;;File: DIRECTOR-ODEON.DIARY Created 8/23/87 19:13:56

SIMULACT's Diary Facility

:STAGENAME VDIRECTOR-ODEON"
:ACTORS ("ACTOR-2")
:GHOSTS NIL
:NUMBER-OF-ACTORS 1
:NUMBER-OF-GHOSTS 0
:SUPPORT-PACKAGE-P NIL
:SUPPORT-PACKAGES NIL
:DIRECTOR-PANE-CONSTRAINT :HORIZONTAL
:DIARY-FLAG T
:DIARY-NAME 'DIRECTOR-ODEON.DLARY"
:TIME-FRAME 1000

<<Received memo from Executive Director at 1000>>Destination: "ACTOR-2"
Source: "ACTOR-I"
Memo time: 842
Memo: "ACTOR-I :STATUS r

<<Delivering memo to Cast member at 1000>>
Destination: "ACTOR-2"
Source: "ACTOR-1"
Memo time: 842
Memo: "ACTOR-I :STATUS r

Again, we see a biography, this time belonging to Director "ODEON". The log that
follows is a history of message traffic handled by the Director's Messenger. Note that
the Diary at this level indicates from who the message was received from, and to whom it
was deliver,. to. It does not record when ACTOR-2 retrieves it from its mailbox.

Finally, we have the Executive Director's Diary:

3-A- 24

;;;File: EXECUTIVE-DIRECTOR.DIARY Created 8/23/87 19:13:57

SIMULACT's Diary Facility

:STAGENAME "EXECUTIVE-DIRECTOR"
:DIRECTORS ("BLACKFRIARS-DIRECTOR" "ODEON-DIRECTOR")
:OTHER-HOST-NAMES ("ODEON")
:*TIME-FRAME* 1000
:QUANTUM 6
:DIARY-FLAG T
:DIARY-NAME "EXECUTIVE-DIRECTOR.DIARY"
:MODE-SELECT-PANE-SIZE :LARGE
:CURRENT-WORLD-NAME ' DIARY-EX"
:AUTHOR "DOUG"
:AUTHOR-COMMENT "SIMPLE EXAMPLE OF THE DIARY FACILITY."
:CREATION-TIME "19:10:02, Sunday August 23,1987"

<<Received memo from Director Messenger at 1000>>
Destination: "ACTOR-2"
Source: "ACTOR-i"
Memo time: 842
Memo: "ACTOR-1 :STATUS T"

<<Delivering memo to Director Messenger at 1000>>
Destination: "ACTOR-2"
Source: "ACTOR-i"
Memo time: 842
Memo: "ACTOR-1 :STATUS T"

Although this is a trivial example, the power behind the Diary facility can be seen. It
can be used to trace system activity and to monitor the flow of information between
agents. This information can prove to be invaluable when trying to determine an agents
lack of response, or wrong response to the cr'rent state of the system. Also for
systems which seem to performing adequately, this information can be used to better
understand system performance.

3-A- 25

3.5 The Gauge Facility

During the development of any complex system, it is often convenient to monitor system
parameters. These measurements can convey a great deal of statistical information about
the system. For instance, this information can be used to characterize system
performance, to monitor system resource allocation, or to measure any other system
attribute. SIMULACT provides this capability to user through its Gauge facility.

3.5.1 The Gauge Pane

SIMULACT's Gauge Pane (see Figure 6) is the interface between the Gauge facility and the
user. This pane is broken into two segments: one for SIMULACT's gauges and the other
for user defined gauges. The gauges displayed by SLMULACT reveal the current elapsed
time of the system, the current mode of operation, and the time frame ratio.

Top of saw*e Pan

-- SIMULACr GAUGES -*-

Elapsed Tune: 00:03:42
Simulation Mode: run

Time Frame Ration: 1.056

-- USER GAUGES --

Cycle Count: 23
Cycle Freq: 0.104

Boam ofs" gPam

Figure 6. SIMULACT's Gauge Pane.

3.5.2 SIMULACT Gauges

Elapsed-Time Gauge
The Elapsed-Time gauge displays the system's current elapsed time in
hours:minutes:seconds. This value is bound to simulact:*elapsed-time* and can be
accessed by the application programmer.

simulact:*elapsed-time* Variable
The value of this variable is the current elapsed time of the system in

3-A- 26

milliseconds. SIMULACT guarantees that the elapsed time associated with any given
Actor is greater than or equal to this value, but less than this value plus one
time frame.

Simulation-Mode Gauge
SIMULACr's current mode of operation is displayed by this gauge. The current mode
is changed via the mouse sensitive Mode Pane, which is only responsive when
SIMULACT's current mode is "run" or "pause".

Time-Frame-Ratio Gauge
This gauge is a measurement of SIMULACT's distributed performance. It is defined
as:

(elapsed wall time)

(sum of all Actor elapsed time)

This ratio times the number of Actors in the system provides an estimate of how
much time is required by SIMULACT to execute one time frame. For the ideal
situation involving no overhead, this ratio would be 1.00, 0.50, and 0.33 for one,
two, and three machine distibutions respectively.

The Elapsed-Time and Time-Frame-Ratio gauges are updated automatically at the mrte
specified by the variable simulact:*gauge-refreh-interval*. This interval is relative
to the elapsed time of. the system and defaults to 1 second. The Simulation-Mode gauge
is refreshed each time SIMULACT's mode of operation is changed by the user.

*simulact:*gauge-refresh-interval* Variable
The value of this variable is the interval of elapsed time that passes between
Gauge Pane updates and is measured in milliseconds. Its default value is 1000
milliseconds (1 second).

3.5.3 User Gauges

Other gauges can be defined by the application programmer and placed into the Gauge Pane
at any time by the make-gauge function. For instance, a gauge can be a permanent part
of the system defined by application code, or it may be created through the Peek and
Poke facility for debug purposes. In general, a gauge is used to display the value of a
variable or Lisp form whose value reflects the current state of the modeled system.

make-gauge name form &rest options Function
The make-gauge function instantiates and returns an instance of the sim-io:gauge
flavor. Depending on the value of the :local init-option, the gauge is either
global or local. If global, an entry for this gauge is placed in each Gauge Pane
throughout the network, otherwise the gauge is only entered into the Gauge Pane of
the Lisp machine executing this function.

3-A- 27

name is used to identify the gauge and must be a string. The value of name along
with the gauge's value is what appears in the Gauge Pane.

The value of a gauge is determined by form. There are three possible form types:
string, symeval, or function. The form is represented as a list, whose first
element is one of the keywords :string, :symeval, or :function.

:string

Format: (:string)

The :string type allows name to be entered into the Gauge Pane without an
associated value. This technique can be used to enter headings into the Gauge
Pane.

:symeval

Format (:symeval symbol)

The :syneval type displays the value bound to symbol in the Gauge Pane. Note
that symbol must be a global symbol.

:function

Format: (:functionfunction &rest args)

The :function type passes functon and its arguments (if any) to eval each
time the gauge is evaluated.

options is a list of keywords followed by values (see section 3.5.4).

3.5.4 make-gauge Options

User defined gauges may be global or local. A global gauge is visible throughout the
network in each Gauge Pane (refer to section ?.?). A gauge is considered local when it
only appears in the Gauge Pane of the Lisp machine on which the make-gauge function was
executed. The :local init-option of make-gauge is used to make a gauge local.
SIMULACT's Elapsed Time, Simulation Mode, and Time Frame Ratio gauges are global

:local t-or-nil (for make-gauge) Init Option
The default is nil. If this is specified as t, the gauge will be a local gauge.

Since gauges are dynamic, their values are subject to change as the simulation
advances. This means that SIMULACT must periodically re-evaluate the value of each
gauge, as well as to update each Gauge Pane in order to reflect these changes. The
refreshing of each Gauge Pane is done automatically by SIMULACT at a rate specified by

3-A- 28

the value of simulact:*gauge-refresh-interval*. The rate at which each gauge is
evaluated is set by the :update , it-option of make-gauge. This value defaults to 5
seconds.

:update interval (for make-gauge) Init Option
interval is an integer amount of time measured in sixtieths of a second used to
regulate the update frequency of a gauge. If not specified, this interval defaults
to 300 sixtieths of a second (5 seconds).

3.5.5 User Defined Gauge Example

As an example of the Gauge Facility, lets consider the code that produced the two User
Gauges shown in Figure 6. Here we have an application that is cyclic in nature. At the
conclusion of each cycle, the global variable *cycle* is incremented. There are two
parameters of interest: the total number of cycles and the number of cycles per second.
The following is a listing of code that produced these two gauges (only code
specifically related to the gauges is shown):

An Application Cyclic In Nature

Global variables

(defvar *cycle* 1) ;incremented during each cycle

Function definitions

(defun cycle-frequency ()
(format nil "-5,3F" ;floating point number (x.xxx)
(if (> simulact*elapsed-time* 0)

(*cycle* (/ simulact*lapsed-time* 1000.0))
0)))

Make gauges
(make-gauge "Cycle" '(:symeval *cycle*))
(make-gauge "Cycle Freq: '(:function cycle-frequency))

3.6 The Controlled Program Wait (CPW) Facility

The controlled program wait (CPW) facility is a user invoked mechanism designed to
increase system performance. The use of this facility can significantly reduce system
run time, which is achieved by not processing idle Cast members during the time frame
cycle. Instead, for each time frame that a member is idle, its elapsed time component
is incremented by one time frame. This technique reduces the consumption of system cpu
time, while preserving the elapsed time relationship among Cast members within the
distributed testbed environment.

3-A- 29

The application programmer invokes the CPW facility via the cast-wait function. This is
typically done in the application code when it is clear that a member cannot continue
until some action occurs. For example, suppose in your system there is a Knowledge Base
Manager (kbm) whose job is to respond to queries. If these queries are implemented
using futures, the kbm's top level function could have the following appearance:

(do 0 ((futures-p)))

In this implementation, it can be seen that an idle kbm continues executing the do loop
until a query is received. In an environment where a substantial amount of waiting of
this nature is incurred, SZULACT would consume valuable cpu time emulating these wait
states.

The controlled program wait facility provides an alternative to these type of
situations. For our kbm example, the following code would enhance SIMULACT's
performance by placing the idle kbm into CPW mode until a query is received:

(cast-wait #'futures-p)

This implementation does not allow the kbm process to run again until a future is
received. When it does eventually run, its elapsed time will reflect the the amount of
time that it was idle.

In general, when an Actor executes the cast-wait function, its current time slice is
immediately interrupted and the Actor's process enters CPW mode. Once in this mode, the
predicate function passed by cast-wait is then executed at the beginning of each
successive time frame. For as long as this function returns NIL, this process does not
run and its elapsed time is incremented by one time slice for each time frame cycle.

3-A- 30

When the predicate returns non-NIL, the process is taken out of CPW mode and resumes
running where it left off.

The cast-wiat function can also be executed in a Ghost's environment. However, due to
the differences between the roles of Ghosts and Actors, the use of the CPW facility by a
Ghost is slightly different. An Actor's script function is written never to terminate
and runs in its own process. This allows the CPW facility to essentially interrupt and
then resume the Actor's process. On the other hand, a Ghost's script function must
terminate, since it is executed at the beginning of the time frame for its affect on the
current state of the emulation. Also, all Ghost script functions run in the SIMULACT
process. For these reasons, when a Ghost executes a cast-wait there is no immediate
affect. The Ghost's script function continues running until it terminates. It is at
the beginning of the next time frame that the Ghost will be in CPW mode.

Once a Ghost is in CPW mode, it will be the predicate function that was passed to
cast-wait that gets executed at the start of each successive time frame. A Ghost will
remain in CPW mode until this predicate returns nonNiL. It at this point that the
Ghost's script function will again be allowed to run.

cast-wait predicate &rest args Function
Executing the cast-wait function places the Cast member into CPW mode. For an
Actor, the Cast member's process is immediately interrupted until the Actor is no
longer in CPW mode. When an Actor exits from CPW inode, its suspended process is
resumed at the point of interruption. When cast-wait is executed by a Ghost, its.
script function continues running until it terminites nattually, then it is in CPW
mode. When a Ghost exits CPW mode, its script function is then executed at its
beginning, not at the point where the cast-wait was executed.

A Cast member remains in CPW mode until the predicate function applied to args
returns non-NIL. While in CPW mode, the Cast member's elapsed time is incremented
by one time frame for each time frame it was in CPW mode.

3-A- 31

A DISTRIBUTED DEVELOPMENT ENVIRONMENT

FOR DISTRIBUTED EXPERT SYSTEMS

Douglas J. Macintosh and Susan E. Conry
Electrical and Computer Engineering Department

Clarkson University
Potsdam, New York 13676

Electronic Address (BITNET): DOUGMAC@CLVMS or CONRY@CLVMS

Abstract

In this paper, we describe an environment intended to aid the development of
applications involving distributed problem solving. Specifically, we present a domain
independent development and simulation facility which permits rapid prototyping,
interactive experimentation, and ease of modification of such systems.

Our environment, called SIMULACT, is based on a model which regards intelligent
agents as semi-autonomous problem solving agents which interact with one another by
means of a message passing paradigm. This system is currently implemented on a
SYMBOLICS 3670andonanetworkofLISPmachines which incorporates both TI EXPLORER
and SYMBOLICS machines.

3-B. 1

1. Introduction

Distributed problem solving systems have received increasing attention in the AI
community. Two factors have motivated this phenomenon. First, the advent of large
parallel machines and the development of small, powerful microprocessor based systems
have encouraged research on problems related to parallel and distributed AI systems.
Secondly, research in distributed problem solving has been driven by the observation
that a number of important applications are inherently distributed. Examples include
distributed situation assessment, distributed sensor nets, air traffic control, and
control of geographically distributed systems such as communications systems and power
transmission networks.

It is easy to envision application environments in which on the order of ten to
fifty semi-autonomous agents might be cooperaively solving a problem. In such an
application, a distributed problem solving system would generally be implemented as a
distributed system with as many independent processors as there are agents in the
system. It would be prohibitively expensive to build a network of processors for the
purpose of providing a testbed in which feasibility studies could be performed and
initial prototype systems developed. The alternative of simulating the desired system
on a single processor is not attractive, since testing a system of this magnitude on a
single LISP machine would probably require time consuming simulation runs for evaluation
purposes. A facility which permits a network of k machines to emulate the behavior of a
network of n machines (where n > k) would provide an attractive alternative.

In this paper, we describe SIMULACT, a development environment for distributed
problem solving systems which provides such a facility. The underlying model of problem
solving which is employed regards the problem solving system as a collection of
semi-autonomous agents which cooperate in problem solving through an exchange of
messages. The system is modular: each agent is essentially an independent module which
can easily be "plugged in" to the system. An agent's interaction with other agents in
the system is totally flexible, and is user specified. Neither the form nor the content
of inter-agent messages is specified by SIMULACT itself. In addition, the user can
suspend execution at any time, examine the state of any agent, modify the state, the
knowledge base, or even the code of an agent, and resume execution. A trace facility
makes post-mortem examination of activity feasible, and a guage facility allows the user
to instrument the system in a very flexible manner.

2. Background

The architectures of the distributed Al systems that have been developed have
largely been driven by the nature of the application. For example, the DVMT [Lesser and
Corkill 1983] is clearly a descendent of the HEARSAY systems, and this has been natural
because the signal interpretation tasks involved in vehicular tracking are similar in
nature to those of speech recognition. There have been very few efforts directed
towards the problem of establishing a domain independent environment suitable for the
development, testing, and debugging of distributed applications.

3-B- 2

One of the notable exceptions is MACE (Multi-Agent Computing Environment) [Gasser
1986]. This system is a development and execution environment for distributed agents.
It essentially provides a tool for programming multiprocessor systems in an object
oriented fashion. In MACE, agents are regarded as intelligent entities, each of which
is capable of performing tasks. These agents are directed and organized by the
programmer through the specification of inter-agent relationships together with high
level directives and constraints on behavior. Agents in MACE are implemented as
property lists of the agent name, so only one copy of an agent may reside on a given
processor. By contrast, in our system multiple instances of a given agent type can be
resident on a processor, thus providing greater flexibility to the user.

Among those systems that are intended for development of distributed applications,
most have been designed with the intent of gaining as much speed in execution as
possible. Examples of this type of system are found in Stanford's CAGE and POLIGON.
Both of these systems are designed for parallel execution of applications built using
them and are based on a blackboard model of problem solving. CAGE [Aiello 1986]
provides a problem solving framework which is based on the assumption that development
will proceed on a multiprocessor system involving up to a hundred or so processors with
shared memory. The user must specify explicitly what is permitted to run in parallel
POLIGON [Rice 1986], on the other hand, is designed to be run on distributed memory
multiprocessor machines involving a large number (hundreds or thousands) of processors.
High bandwidth interprocessor communication is necessary for a successful implementation
of POLIGON. A number of primitive operations (such as rule evaluations and blackboard
updates) are ;utomatically done in paralleL

Both CAGE andPOLIGONhave programming languages associated with them. As in our
system, these languages facilitate the writing of application programs and provide a
layer of abstraction between the user and the system's implementation details. Unlike
our system, CAGE and POLIGON have been devised in an attempt to investigate issues
related to exactly how much speedup can realistically be anticipated when AI programs
are run in parallel environments.

In the following two sections, we discuss SIMULACT 's system structure and
concurrency control mechanisms. We also describe the five user interface facilities,
which were designed to make SIMULACT attractive as a development environment. We
conclude with a brief discussion of experiments we have performed in order to assess the
degree of overhead due to SIMULACT as implemented on one and two machines.

3. System Structure

SIMtLACT is a distributed system that allows n agents to be modelled on k
machines, where n > k. Each agent runs asynchronously and coordinates its activity with
that of other agents through the exchange of messages. The activities performed by each
agent are assumed to be complex, so that the parallelism is coarse grained. SIMULACT
allows the programmer to write code in Lisp as though there were as many Lisp machines
in the network as there are agent- in the distributed system being developed.

3-B- 3

As is evident from Figure 1, SI4ULACT is comprised of four component types:
Actors, Ghosts, Directors, and an Executive Director. Actors are used to model agents
in the distributed environment. Each Actor type is individually defined, and used as a
template to create multiple instances of that Actor type. An Actor is a self contained
process which runs in its own non-shared local environment. Although Actors run
asynchronously, the elapsed CPU time for each actor never varies by more than one "time
frame'. These Actors closely resemble the entities described in Hewitt's "Actor
Approach To Concurrency" (Hewitt 1986].

ACTOR ACTOR GHOST HS

a) Host level strucMuxe

EXECUTIVE DIRECTOR

OtICTOR I DIRECTOR k

ATOR AC700OR M0T A~S CTo On IS C4S

I 7 - , -,1

b) Nertwrk level smucnwe

Figure I

Ghosts are used in SIMULACT to generate and inject information into the model
that would naturally occur in a "real" distributed expert system. They do not represent
any physical component of the modeL For example, external inputs (alarms, sensors,
etc.) affecting the state of the system can be introduced via Ghosts, as well as inputs
that reflect the "side effects" of the systems activities. Ghosts can also be used to

3-B- 4

inject noise or erroneous information into the system so that issues concerning
robustness can be easily investigated. The performance of an expert system can be
monitored in subsequent runs through the simple modification of these Ghosts.

Due to the similarities between Actors and Ghosts, we refer to them as Cast
members. Each Cast member has a unique "stagename" and a "mailbox" used by the the
communication facility in muting messages among members. Each also has a "script
function" which defines its high level activity.

The control structure residing at each host processor in SIMULACT 's distributed
environment is known as the Director. The Director is responsible for controlling the
activities of the Cast members at that site, and for routing messages to and from these
members. These activities are assigned to the Grip and Messenger respectively. The
responsibilities of the Grip range from setting up and initializing each Cast member's
local environment to managing and executing the Actor and Ghost queues. The Messenger
only deals with the delivery and routing of messages. When a message is sent, it is
placed directly into the Messenger's "message-center". During each time frame, the Grip
invokes the Messenger to distribute the messages. Whenever the destination stagename is
known to the Messenger, the message is placed in the appropriate Cast member's mailbox.
Otherwise, it is passed to the Executive Director's Messenger and routed to the
appropriate Host.

There is one Executive Director in SIMULACT which coordinates all Cast member
activities over an entire network. The Executive Director provides the link between
Directors necessary for inter-machine communications, directs each Grip so that
synchronization throughout the network is maintained, and handles the interface between
the user and SIMULACT.

4. Concurrency Control In SIMULACT

Concurrent execution of n Actors on k machines (n > k) is emulated through the
imposition of a "time frame" structure in execution. A time frame cycle breaks down to
three fundamental parts: invocation of the Ghosts, the distribution of mail by the
Messengers, and invocation of the Actors. For SIMULACT distributed cver two hosts,
Figure 2 depicts a representation of two time frames.

3-B- 5

DIRECTOR I EXECUTIVE DIRECTOR DIRECTOR 2

GHOSTSRAM

GHOSTS
MESSENGER

MESSENGRroMESSENGER

~~ACTOR FRAME "

ACTORS

FigureT 2:ACTOtRiSIMJLC

GHOSTS,,

MESSENGEtR

GHOSTS

MESSNGERMESSENGER

C ACTOR FRAM

ACT"ORS

1E 11ACTORS

Figure 2: Activity in SIWULACr

At the start of the first time frame, the Executive Director notifies both
Directors to begin executing Ghosts. (This models the occurrence of events in the world
external to the distributed system.) At the conclusion of the Ghost frame, each
Director automatically invokes its Messenger. The Messenger distributes all messages
which were generated during the current Ghost frame, as well as all those resulting from
the previous Actor frame. Mail destined for Cast members residing on the same host
processor is placed in the appropriate mailboxes. The solid line extending from each
Director's Messenger represents the transfer of non-local mail to the Executive
Director's Messenger. In order to reduce network overhead, this transfer is done in the
form of a single message. This communication always occurs, even if there are no
messages to distribute, as a synchronizing mechanism for the time frame so that Actors
cannot "run away". After sending this message, each Director enters a wait state until
the Actor frame directive is received from the Executive Director. The dotted line
directed out of the Executive Director's Messenger represents the possible distribution
of inter-machine mail prior to sending the Actor frame instruction. The Executive

3-B- 6

Director's Messenger is invoked immediately following the receipt of the last Director's
Messenger communication.

Upon receiving an Actor frame command from the Executive Director, the Director's
Messenger is invoked to distibute any inter-machine messages that may have been
received. Next, each Actor is allowed to run for one time slice (time frame). At this
point the Executive Director immediately enters its next time frame cycle, sends the
Ghost frame command, and waits for all the Director Messengers to send their next
synchronizing signal. Again in the second time frame of Figure 2, it is Director 2
which requires the most time to run.

5. User Interface Facilities

There are. five user interface facilities that will be discussed in this section.
These facilities provide mechanisms for inter-agent communication (Mail), code sharing
(Support Packages), interactive monitoring and debugging (Peek and Poke), post mortem
trace analysis (Diary), and runtime monitoring (Guage). These features were designed to
make SIMULACT more attractive as a development environment for expert systems.

The Mail Facility

Depending on the constraints and characteristics of the expert system being
developed, the application programmer constructs a network environment of intelligent
agents which collectively work together towards the satisfaction of one or more goals.

SIMULACT provides several mechanisms allowing these agents to communicate without
being concerned with implementation details.

In general, communication between agents occurs when one agent sends a packet of
information to another, addressing the target agent by its stagename. The format of
these packets is not specified by SIMULACT. Instead, it is left up to the user to
formulate a syntax that is convenient in the context of the system being developed.

The "send-memo" function is the simplest mechanism one Cast member can use to
communicate with another. This function accepts two arguments: the stagename of the
destination Cast member and the memo to be sent. Automatically, at the beginning of the
next time frame, this message will appear in the destination agent's mailbox. Each memo
contains the stagename of the sending member, as well as a timetag indicating when it
was sent. It is the responsibility of each Cast member to periodically to check its
mailbox for incoming messages.

Many communications between agents take the form of requests for information.
Using the send-memo function requires that a sending agent sort its mail to retrieve the
reply to a request after it has been received. Futures [Davies 1986; Halstead 1985;
Rice 1986; Schoen 1986] provide an agent with a mechanism for sending a message that
returns a result. A memo sent using the future facility in SIMULACT returns a data
structure called a future. After the memo has been received and processed, the result

3-B- 7

is routed back to this data structure. The sending agent uses this future to determine
when the result is available, and to extract it after it has arrived. SIMULACT
provides this capability through the "send-future" function.

In some cases, requests for information may not have one definitive reply.
Instead, pieces of information may be returned at different times. SIMULACT allows
two Cast members to establish a "future stream" between themselves for returning results
over time. The user specifies criteria for determining when a future stream should be
closed.

The Support Package Facility

A Support Package contains code that can be accessed by several Cast members, thus
reducing memory requirements. As in any shared memory system, an integrity violation
could occur whenever a Support Package accesses or alters global information. The
underlying assumption concerning independent environments for each Cast member would be
violated. To guard against these problems, SIMULACT detects the pote'iial occurrence
of integrity violations and warns the user when a Support Package tries to instantiate a
global variable. Ideally, Support Packages should contain purely functional code.
However, this restriction would severely constrain the code that can be placed into
Support Packages.

Them are two ways to use Support Packages other than for purely functional code.

One way is for a Cast member to pass a local data structure as an argument to a Support

Package function. If that function is "for effect", the result could then be bound
appropriately. The other method requires the application programmer to use SIMULACT's
"sim-set" functions. Basically, the site-set function allows the Support Package to
alter a global variable that is present in each of the Cast packages. The goal of the
Support Package facility is to reduce overhead. Use of Support Packages does reduce the
overhead, but it does so at the expense of requiring that the user have more knowledge
about SIMULACT 's implementation and Lisp packages (Steele 1984] than might be
desirable.

The Peek And Poke Facility

This facility can be invoked at any time when running an expert system as a
monitoring and debugging tool. It allows the user to enter the local environment of any
Cast member and to examine or change any part of its environment. The Peek and Poke is
invoked through a menu and displayed at the Executive Director's host. However, any
Cast member residing on any host can be accessed.

The Diary Facility

The Diary facility can be used as a debugging tool, or simply as a mechanism for
post mortem analysis of system behavior. There are three levels of Diaries, all of
which may be independently active. The Executive Director's Diary, when turned on,
records all inter-machine messages handled. Director Diaries record all local

3-B- 8

communications, while Cast member Diaries record all screen activities. All Diaries are

written to files to permit post mortem examination.

The Gauge Facility

This facility is used by SIMULACT to display the current elapsed run time,
current mode of operation, and the "time frame ratio" which is a measure of SIMULACT 's
distributed performance. It can also be ,ised as a runtime monitoring device by the
user. The "make-gauge" function accepts two arguments: a string to be displayed in
SIMULACr 's gauge window and a function to be evaluated periodically. SIMULACT

automatically evaluates this function and updates the gauge window appropriately
throughout the execution of the expert system.

6. Performance Issues

The overhead incurred in managing the emulation of a distributed environment is one
important measure of system performance. In this section we present preliminary results
indicating the overhead incurred by SIMULACT as implemented on one and two machines.
We first outline the experiments which were performed, then discuss the results
obtained.

Our experiments were designed to obtain results that would assess SIMULACr 's
behavior as the number of messages per time framnle increases. In each of the
experiments, the number of messages per time frame, m, was varied over the range 0 to
10n, where n is the number of Actors in the system. Each Actor process worked
continually, consuming its total time slice allowed per time frame. Thus when n = 0, we
measured SIMULACT 's best case performance. It should be pointed out that in the
distributed case where n > 0, the number of messages per time frame in our experiments
represented entirely inter-machine communications, emulating a worst case senario.

The measurement used to represent SIMULACT's performance was a "time frame ratio"
gauge. This ratio is defined as:

(elapsed wall time)/(sum of all Actor elapsed time)

This ratio times the number of Actors in the system provides an estimate of how much
time is required by SIMULACT to execute one time frame. For the ideal situation
involving no overhead, this ratio would be 1.0 and 0.5 for the one and two machine cases
respectively.

Figure 3a depicts our experimental results for SIMULACT running on a single
processor. Figure 3b shows the two processor results. In each case, data was collected
over a range of 1 to 40 Actors per processor and a one second time frame was specified.
These results are preliminary and modifications to SIMULACT have already been
scheduled to enhance performance. Further testing is planned to observe the effect of
three machine distribution as well as varying time frame sizes.

3-B- 9

1.25

1.20

1.15 - - -

1.10q."
5 n

en - 2 nI

1.00

1 2 a 6 10 20 40

NUMBER OF ACTORS (n)
a) Single procmsor

1.2
1.1 - " - - - m- u IQ

0.

1. - -- - /

0.8 M-5 M

0.7

0.6

0.5
1 2 4. 6 8 10 20 40 80

NUMBER OF ACTORS (n)
b) Two pmCemrs

Figure 3: SIMULACT's Performance

For the single machine case with no message passing, SIMULACT 's overhead
approaches 4.5%. Similarly, the distributed case approaches 10% overhead. Both sets of
curves indicate that as the number of messages per time frame increases, so does the
overhead. In fact, between 100 and 200 messages per time frame handled by the system
seems to be a saturation point for the Messenger. Currently the Messenger uses an
a-list to associate stagenames with Cast members. We should see improvement when this

3-B- 10

is implemented as a hash table lookup. Also note that the distributed case after
saturation degrades at a much faster rate. One explanation for this can be deduced from
Figure 2. All inter-machine messages are handled three times by different Messengers
and must be sent over the Lisp machine network. Messages among agents residing at the
same host processor are handled once by the Messenger and sent directly to the
appropriate mailbox.

7. Concluding Remarks

In this paper, we have describe SIMULACT, an environment for the design and
development of distributed expert systems. This system is currently running on a
network of three Lisp machines.

SIMULACr has been particularly useful in the development of a distributed
planning system [Conry, Meyer, and Lesser 1986]. It has been used to expose the nature
of message traffic in this planner and to develop and debug plan generation in a
distributed environment. SIMLJLACT is also being used as an aid in the developement of
a distributed diagnosis system, an intelligent distributed knowledge base, and a
distributed model for an express mail system. In each of these projects, SIMULACr 's
modularity and transparency have allowed us to concentrate our efforts on the
development of these agents rather thaa on the problems associated with managing a
distributed environment.

Acknowledgments

The Authors would like to express their appreciation for the contributions of their
colleagues Robert Meyer and Janice Searleman. Their suggestions and support have been
invaluable. This work was supported in part by the Air Force Systems Command, Rome Air
Development Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force
Office of Scientific Research, Boling AFB, DC 20332 under Contract No.
F30602-85-C-0008. This Contract supports the Northeast Artificial Intelligence
Consortium.

References

Aiello, N. 1986. 'User Diected Control of Parallelism; the CAGE System." In Proceedings
of the Expert Systems Workshop (Asilomar, Pacific Grove, CA., Apr. 16-18). DARPA,
146-151.

Brown, H., C. Tonge, and G. Foyster. 1983. "Palladio: An Exploratory Environment for
Circuit Design," IEEE Computer (Dec.): 41-56.

Conry, S. E., R. A. Meyer, and V. R. Lesser. 1986. "Multistage Negotiation in
Distributed Planning", University of Massachusetts, Amherst Massachusetts 01003, COINS

3-B- 11

Technical Report 86-67 (Dec.).

Davies, B. 1986. "CAREL: A Visible Distributed Lisp." In Proceedings of the Expert
Systems Workshop (Asilomar, Pacific Grove, CA., Apr. 16-18). DARPA, 171-178.

Delagi, B. 1986. "Care User's Manual," Knowledge Systems Laboratory, Department of
Computer Science, Stanford University.

Durfee, E. 1984. "A Parallel Simulation of a Distributed Problem Solving Network." M.S
Thesis, Electrical and Computer Engineering, University of Massachusetts at Amherst.

Gasser, L 1986. "MACE, A Mlti-Agent Computing Environment." USC-DPS Group,
University of Southern California (Mar.)

Halstead, R.H. 1985. "Multilisp: A Language for Concurrent Symbolic Computation." ACM
Transactions on Programming Languages and Systems 7, no. 4 (Oct.): 501-538.

Hewitt, C. 1986 "Concurrency in Intelligent Systems." Al Expert (Premier): 44-50.

Lesser, V.R. and D.D Corkill. 1983. "The Distributed Vehicle Monitoring Testbed: A Tool
For Investigating Distributed Problem Solving Networks." The Al Magazine 4, no. 3
(fall): 15-33.

Mac Intosh, D. I., S. E. Cory. 1987. " SLMULACT : A generic tool for simulating
distributed systems." In Tools for the simulation profession (Orlando, FL., Apr. 6 - 9,
1987) The Society for Computer Simulation, San Deigo, CA., 18-23.

Misra, 3. 1986. "Distributed Discrete-Event Simulation." ACM Computing Surveys 18, no.
I .(Mar.): 39-65.

Moon,D.A. 1986. "Object-Oriented Programmingwith Flavors." In OOPSLA'86 Conference
Proceedings (Portland, OR., Sep. 29 - Oct. 2). ACM, Baltimore, MD., 1-8.

Rice, 3. 1986. "Poligon, A System for Parallel Problem Solving." In Proceedings of the
Expert Systems Workshop (Asilomar, Pacific Grove, CA., Apr. 16-18). DARPA, 152-159,

Schoen,E. 1986. "TheCAOSSystem."KnowledgeSystemsLaboramtory,DepartmentofComputer

Science, Stanford University, Report no. KSL-86-22 (Mar.).

Steele, G.L. 1984. Common LISP. Digital Press, Burlington, MA.

Stefik, M. and D.G. Bobrow. 1986. "Object-Oriented Programming: Themes and Variations."
The Al Magazine 6, no. 4 (winter): 40-62.

3-B- 12

SIMULACT: A GENERIC TOOL

FOR SIMULATING DISTRIBUTED SYSTEMS

Douglas J. MacIntosh and Susan E. Conry
Electrical and Computer Engineering Department

Clarkson University
Potsdam, New York 13676

Abstract

This paper describes a generic tool for simulating and observing the behavior of
networks of distributed agents. Our system, called SIMULACr, provides a facility for
handling communication among a group of distributed agents. It does so without
requiring that the application programmer be aware of SIMULACT's implementation
details. The goal of the system is not primarily one of achieving speed of execution
through parallelism. Instead, it is assumed that the application is inherently
distributed, and a natural framework for investigating network behavior is provided.

Our system is implemented in Lisp and runs on a network of Lisp machines. The
application programmer writes code in Lisp as though there were as many machines in the
network as there are agents to simulate. SDMULACT is a simulator shell that provides
facilities for message handling, instrumentation, and controlling the simulation. It
also transparently handles all overhead associated with executing the simulation.

3-C- 1

1. INTRODUCTION

In this paper we discuss SIMULACT, a generic tool for simulating and observing the
behavior of networks of distributed systems. Unlike many other systems for simulating
distributed environments [Brown et al. 1983; Delagi 1986; Schoen 1986], the goal of our
system is not primarily one of achieving speed of execution through parallelism
Instead, it is assumed that the application is inherently distributed, and a natural
framework for investigating network behavior is provided. Our system is useful in
simulating distributed systems in which processing agents collectively work together
towards satisfaction of one or more goals. It is assumed that each agent runs
asynchronously and can only communicate with neighboring agents through an exchange of
messages. In addition, the activities performed by each agent are assumed to be
complex, so that the parallelism is coarse grained.

There are two fundamental approaches to discrete simulation: event driven and time
driven. Both of these simulation strategies make use of a clock to represent the
current elapsed time of a simulation and typically allow communications between
simulated objects using time tagged messages. The fundamental difference between the
two strategies lies in the way in which the simulation is controlled. In an event
driven simulation, there usually is a data structure referred to as an "event-list".
This list is used as a scheduling queue by the simulator. As the simulation advances,
the scheduler removes from the event-list the entry having the earliest time tag, sets
the simulation's elapsed time to this time, and initiates the evaluation of this current
event by invoking the appropriate process. During the simulation new events may be
generated and placed into the queue, current ones may be modified or removed, or the
queue may remain unchanged. In a time driven simulation, on the other hand, the
simulated elapsed time advances at a uniform rate (often termed the time frame). The
clock is incremented by one time frame at each stage rather than being advanced to the
time of the next scheduled process.

In order to simulate a physical system using these simulation techniques, it must
be possible to model the system as a collection of discrete processes, each performing a
specific task. It is then the simulator's responsibility to execute code simulating
each task in an order that is consistent with that of the physical system being
modeled.

There are several limitations of conventional discrete simulation systems in
modeling networks of distributed agents. One is found in the time required to simulate
systems having a large number of events with many interactions. It is not uncommon for
a simulation of a large system to run for hours, or even days. (This phenomenon is the
underlying motivation behind current research in the areas of distributed simulation
architectures and techniques.) A second drawback of discrete simulation lies in the
observation that there are many physical systems that cannot be adequately modeled using
a discrete simulator. It may be unnatural or even impossible to view a system as a
collection of discrete events which collectively perform some task. A third problem is
associated with assessing the real time components associated with a simulation.

3-C- 2

To illustrate the importance of real time issues, consider the problem of designing
a distributed system that is to run on a network of cooperating microprocessors. Before
such a system is built, it may be desirable to simulate its behavior over several
different network configurations. It is not enough for the simulation to determine
whether or not each configuration provides a viable solution to the problem. It must
also provide some information as to how well each configuration performed the job (i.e.,
how much real time would be required by the physical system to perform the job). It is
not always straightforward to determine the real time associated with a simulation. A
number of discrete simulators use clocks that correspond to the event count, and not to
any real time dimension [Durfee 1984; Lesser and Corkill 1983].

Each of these issues has been considered in the development of our system, and is
addressed in subsequent sections. SIMULACT is written in ZetaLisp and runs on the
SYMBOLICS 3600 and the TI EXPLORER Lisp machines. Our implementation makes
extensive use of the flavor facility in ZetaLisp to improve data encapsulation and
facilitate the modeling of environments in which a group of semiautonomous processes do
not share a common memory. The current network testbed consists of one SYMBOLICS and
two EXPLORERS.

2. SIMULATION STRUCTURE AND STRATEGY

SIMUJLACT is a distributed real time, time driven simulator capable of achieving
improved run time performance through the application of event driven and parallel
programming strategies. In this section, we first describe the major components of
SIMULACT at a high level then discuss the simulation strategy employed by SIMULACT and
some details of its implementation.

2.1 Simulation Structure

SIMULACT has a modular structure comprised of four component types: Actors,
Ghosts, Directors, and an Executive Director (see Figure 1). Actors play the part of
processing agents in a distributed system. Multiple instances of agents of the same
type in a system are easily incorporated in SIMULACr without requiring any special code
development on the part of the user. Ghosts generate information about the environment
that naturally occurs in a "real" distributed system and do not represent any physical
component of the distributed system being simulated. The Director is responsible for
controlling the simulation and all interactions between Actors and Ghosts at each host
(there is one Director for each Lisp machine in the network). Finally, the Executive
Director coordinates a simulation distributed over a network of Lisp machines. In
general, Actors play the role of the entities being simulated, while the Director stays
backstage and tries to get realistic performance from the Actors. In the paragraphs
which follow, we describe the role of each of these system components in more detail.

2.1.1 Actors

Actors in SIMULACT closely resemble th%, entities described in Carl Hewitt's "Actor
Approach To Concurrency" (Hewitt 1986]. Hewitt's Actors are self contained entities

3-C- 3

which work cooperatively in performing computation and can only be accessed via message
passing. Sending and receiving messages are considered to be atomic operations, and
messages are accepted one at a time in the order they arrive. Each message, when
evaluated, may influence an Actor to create new Actors, send new communications to other
Actors, or to specify the manner in which it will handle new messages.

In SIMULACT, Actors are also self contained and represent the fundamental structure
used to simulate concurrency. Our Actors communicate asynchronously by routing messages
through the Director. Each Actor has a "stagename" that is known by its Director and is
used in routing these messages. When a Director is asked to transmit a message, it does
so by either updating the appropriate Actor's "mailbox" directly, or routing the message
to the appropriate Lisp machine through the Executive Director (if the destination agent
resides on a different host machine in the network). When an Actor decides to read its
mailbox, it has the responsibility of preserving the incoming messages and choosing
which one, if any, it will currently respond to. The content and form of messages are
independent of SJMULACT, and are determined by the application programmer.

The connectivity of Actors may be fixed or dynamic depending on the physical system
being simulated. In a rigidly connected system, each Actor knows the stagenames of
Actors with whom it can directly communicate. It is also possible for an Actor to know
of the existence of a distant Actor to whom it can indirectly send a message. In
simulations where the physical connectivity is allowed to change depending on the
current state of the system, SIMULACT provides the capability of generating and managing
appropriate stagenames on demand. This is analogous to situations in which Hewitt's
Actors spawn new Actors [Hewitt 1986].

2.L2 Ghosts

One issue which must be addressed in any simulation is the representation of events
which occur in the external world and may have impact on the state of the simulation.
Examples include external inputs to the simulation from its "global environment" as well
as inputs which reflect the "side effects" of the simulated system's activity. Ghosts
give the application programmer a facility for injecting these factors into the
simulation. For example, a Ghost can use its own event-list to send an Actor a message
signaling the occurence of some event at a given time. A Ghost's event-list can easily
be altered to investigate the performance of the simulated system in subsequent runs.
Ghosts can also be used to inject noise, or wrong information into the simulated system
so that issues associated with robustness can be easily investigated.

Actors and Ghosts are referred to as Cast members in SIMULACT, since they are very
similar in structure. Each Cast member has a top level function associated with it
referred to as a "script function". The script function is written by the application
programmer and is invoked by SIMULACT to initiate each Cast member's simulation.
Differences between these two cast types are specified (in. implementation) through
daemons associated with the Actor and Ghost data types. These differences arise from
the fact that Actors represent the physical system and must be carefully controlled to
achieve a realistic simulation. On the other hand, Ghost are considered part of the

3-C- 4

overhead associated with the simulation.

2.1.3 Directors

SIMULACT is a distributed simulator which runs on a network of Lisp machines. Each
host in the network uses a Director to control the activity of Cast members residing at
that site, and to route messages to and from these Cast members. The Director assigns
these activities to the Grip and Messenger respectively. The responsibilities of the
Grip range from setting up and initializing each Cast member's local environment to
managing and executing the Actor and Ghost queues. The Messenger only deals with the
delivery and routing of messages. When a message is sent, it is placed directly into
the Messenger's "message-center". During each time frame, the Grip invokes the
Messenger to distribute the mail. Whenever the destination stagename is known to the
Messenger, the message is placed in the appropriate Cast member's mailbox. Otherwise,
it is passed to the Executive Director's Messenger and routed to the appropriate Host.

2.1.4 Executive Director

There is one Executive Director in SIMULACT which coordinates the entire simulation
over a distributed network. The Executive Director provides the link between Directors
necessary for inter-machine communications, it directs each grip so that synchronization
throughout the network is maintained, and it handles the interface between the user and
SIMULACr.

2.2 Simulation Strategy And Implementation

In this subsection, we describe the simulation strategy employed by SIMULACT
without giving extensive details regarding implementation. Mechanisms for controlling
the simulation are discussed first. Since SIMULACT is implemented in Lisp using an
object oriented programming style, there are two features of the system's implementation
that are described in more detail. This is done in the latter half of the subsection,
where we discuss message handling protocols and mechanisms for improving efficiency.
The reader who is unfamiliar with Lisp and object oriented programming may find it
useful to refer to [Moon 1986; Steele 1984; Stefik and Bobrow 1986].

2.2.1 Simulation Strategy

In SIMULACT, the components of the physical system being simulated are modeled
solely by Actors. Only Actors need to be considered when determining the current real
time associated with the simulation. For this reason, each instance of an Actor is
implemented as a process on a Lisp machine. In general, an Actor's script function is
written by the application programmer so that it never "terminates". At any given time,
the amount of CPU time spent by the Lisp machine in executing an Actor's script function
can be determined. This CPU time, along with the Actor's CPW time (Controlled Program
Wait time which will be discussed in the next subsection), are used in computing the
elapsed real time for a given Actor.

3-C- 5

The Director is responsible for controlling the simulation on the host machine
where it resides. Each Director has two local state variables referred to as actors and
ghosts. Together these make up SIMULACT's scheduling queue local to each Lisp machine.
The Director advances the simulation locally by one time frame as follows:

(1) When the Executive Director signals the Grip to begin executing a time frame,
the Director's current elapsed time is set to the minimum elaps d time of its
dependent Actors.

(2) The Grip invokes each Ghost in the ghost queue in a round robin fashion for
their current effect on the simulation.

(3) The Messenger diLtributes all messages present in its message center. Any
message with an unknown destination is routed to the Executive Director.

(4) The Grip signals the Executive Director that it has completed step (3) and
enters a wait state. This wait state is maintained until all Grips have
finished this step.

(5) When the Executive Director signals the Grip to continue, each Actor is removed
from the actor queue in a round robin fashion, and

- if it is active, it is allowed to run for one time frame.

- if it is not active, its CPW time is incremented by one time frame.

(6) Go to (1).

From a network perspective the simulation can be viewed as follows:

(1) SIMULACT's current elapsed time has value (n)(time-frame).

(2) The Executive Director sends each Director a message to begin executing a time
frame.

(3) The Executive Director collects all inter-machine messages from each Director,
and distributes them accordingly.

(4) The Executive Director sends each Director a message to continue executing the
current time frame.

(5) SIMIJLACT's current elapsed time is incremented by one time frame (n=n+l).

(6) Go to (1).

Note that for each time frame, messages are distributed after all the Ghosts have been
invoked. These messages include the current ones just generated by the Ghosts, plus any

3-C- 6

Actor messages generated during the previous time frame. It is the responsibility of
each Cast member to read its mailbox in order to receive these messages, which are
tagged with the time of origination. If required, the application programmer can
specify a delivery delay time appropriate for the physical system being simulated.

An example of SIMULACT's simulation strategy is depicted in Figure 2. The
simulation consists of 6 Actors (A, B, C, D, E, F) distributed over two hosts. During
the first time frame, Host 1 allows Actors A, B, and C to run for one time frame each.
Likewise, Actors D, E, and F each run for one time frame on Host 2. Neglecting all
overhead (including Ghosts) one simulated time frame requires three time frame units to
execute. After both machines have completed execution of the current time frame, the
next time frame begins. As the length of the time frame is made shorter, the simulation
model can be viewed as a collection of parallel processes, each running on an
independent machine in the network. Of course, simulation using a very short time frame
will increase the overhead associated with managing multiple processes running on a
single machine.

Allowable time frames in SIMJULACT may range from one sixtieth of a second to
several seconds. The user specifies his own time frame during system initialization.
For simple physical systems, SIMULACT's smallest time frame may not be long enough to
expose the inherent parallelism. However, SIMULACT is designed to simulate physical
systems that are complex.

2.2.2 Implementation Related Details

As has been mentioned, SIMUACT "is implemented using an object oriented
programming style. The flavor facility in ZetaLisp and similar linguistic constructs in
languages such as CommonLOOPS and SMALLTALK (Stefik and Bobrow 1986] refer to
communications amongobjects as bein gachieved through messagepassing. SIMULACTmakes
use of many types of ZetaLisp objects, not all of which are Actors or Ghosts. During
the implementation of SIMULACT, we found that it was convenient to distinguish between
message exchange among flavor instances and message exchange among the Cast in
SMIULACT. For this reason, we say that Cast members communicate with one another by
sending and posting memos. It is the application programmer's responsibility to specify
the format of memos.

The difference between sending a memo and posting it is best explained using an
analogy from the office environment In an office environment, one worker would send a
memo to one or more fellow workers to notify them of some specific information or
request. To be sure that each worker received the memo, a copy would be placed directly
in each of their mailboxes. It is up to each worker to decide what is done with the
memo (i.e., read it, lose it, or throw it away). In SIMULACT, memos are sent to the
mailbox associated with each Cast member. Memos are sent using a "send-memo" operation
invoked by a Cast member, and received by a "receive-memos" operation invoked by a Cast
member to read its mailbox.

3-C- 7

On the other hand, if an employee had some information or a request that may be
potentially valuable to some other employees, a memo could be posted at a convenient
location. In this case, the worker who posts the memo does not know who may see it.
Though a facility for posting memos is present in SIMULACT, it is not yet clear whether
this facility has wide application.

One difficulty with the memo facility arises when a Cast member is idle waiting for
an incoming memo. It would be inefficient for S1MULACT to simulate Cast members
waiting. To alleviate this inefficiency, we have incorporated the use of futures and
the CPW facility in SIMULACT. Futures permit Cast members to request information and
continue processing until they cannot proceed without the requested data. The CPW
facility has been introduced as a mechanism for increasing SIMULACT's efficiency by
reducing the time spent dealing with idle agents.

Futures are used in some frameworks that support the development of multiprocessor
systems, and in some parallel programming languages [Davies 1986; Halstead 1985; Rice
1986; Schoen 1986]. They provide an agent with a mechanism for sending a memo that
returns a result. A memo sent using the future facility returns a data structure called
a future. After the memo has been received and processed, the result is routed back to
this data structure. The sending agent uses this future to determine when the result is
available, and to extract it after it has arrived.

In SIMULACr, the application programmer has two future options: future-memo and
future-memo-wait. The future-memo operation sends a memo to a Cast member and returns a
future. The application programmer uses the functions "future-state" and "future-value"
to determine when the result is available and to access it. This allows an agent to
prform other tasks while waiting for a reply to a memo.

The "future-memo-wait" option is used when an agent requests information and cannot
continue until it is received. This function alters the state of the Actor's process to
reduce the overhead associated with impiementing an Actor waiting for an incoming memo.
Executing this function tells SIMULACT's scheduler to increment the Actor's CPW time by
one time frame each time it is scheduled to nu. Once the future has been satisfied,
the Actor becomes active and will continue running beginning on the next time frame.

The controlled program wait feature gives SIMULACT the capability to speed up the
simulation by not processing Actors that are waiting. At the same time, the real time
component associated with each Actor is maintained. To apply this technique to
situations other then memo waiting, the "cast-wait" function is provided. The
programmer passes a predicate function and its arguments to cast-wait, and the CPW
facility is invoked until the predicate evaluates true.

The CPW facility can also be used with Ghosts. Executing the cast-wait function
within a Ghost's script function places the Ghost into CPW mode. While a Ghost is in
this state, its script function is not evaluated. Instead the predicate function passed
to ,ast-wait is evaliated. Once this function evaluates true, the ghost resumes normal
operation.

3-C- 8

3. SIMULACT'S USER INTERFACE

SIMULACT provides the application programmer with a tool for simulating and
investigating the behavior of networks of agents. Application code is written for each
agent in Lisp as though there were as many machines in the network as agents in the
system. In this section we describe SIMULACT's user interface.

3.1 SIMULACT Initialization

SIMULACT has three initialization modes: New World Generation, Old World Load, and
Current World Edit. The generation of a new world in SIMULACT is a menu driven process
in which the application programmer specifies the details required to do the
simulation. This includes initializing the Executive Director, the Director on each
host, and every Cast member. Once the generation of a new world in SIMULACT has been
completed, the user has the option of saving it to disk. The Old World Load facility
automatically loads this information into SIMULACT, without involving the user. The
Current World Edit option loads an old world into SIMULACT, and then allows the user to
edit it. This is a convenient method for running subsequent simulations with minor
alterations.

3.2 Executive Director and Director nitialization

Initializing the Executive Director configures the Lisp-machine network and sets up
the user interface. The user must specify the number of hosts involved in the
simulation, and set such parameters as the time frame size and the simulated start
time. This allows SIMULACT to initialize the gauge facility, which is that part of the
user interface which provides control over the simulation (mode select gauge), displays
the current simulated time (elapsed time gauge), and allows the application programmer
to monitor domain specific characteristics. The initialization of the Executive
Director is not complete until all Directors are initialized.

Director initialization is done locally at each host and includes initializing the
Cast and their environments. After each Cast member is initialized, the Messenger makes
an entry into its "address-book". The address-book is an association list linking a
Cast member's stagename to its corresponding Lisp object, and is used to route memos.
Director initialization also alters the host machine's operating system to accomodate
the specified time frame size.

3.3 Cast Member Initialization

Each Cast member runs in its own package [Steele 1984], so it cannot directly
access any other Cast member's local state. This ensures that all communications among
Cast members are directed through SIMULACT. Each Cast member has one or more
initialization files associated with it. These files contain code written by the
application programmer describing all activities performed by the Cast member. The Cast
member's script function must be contained in this code.

3-C- 9

Each Cast member is given a stagename during initialization. As has been
mentioned, these stagenames are used by the Director's Messenger in routing memos. Each
cast member is also associated with a window pane on the console's screen during
initialization. The typical user interface functions (i.e., print, read, etc.) are
shadowed so that the user can access each cast member easily through these windows. The
collection of all Cast panes makes up the Director's window frame. SIMULACT's interface
allows the user to display one Director frame at a time. It also notifies the user when
a deexposed frame needs attention.

Since each Cast member maintains its own independent local state, multiple
instances of the same Cast type can lead to multiple copies of code. To reduce this
costly overhead SIMULACT allows Cast members to use Support packages.

3.4 Support Packages

A Support package contains code that can be accessed by several Cast members, thus
reducing memory requirements. As in any shared memory system, a problem could arise
whenever a Support package accesses or alters global information. The underlying
assumption concerning independent environments for each Cast member would be violated.
To guard against these problems, SIMULACT automatically detects their potential
occurrence and warns the user when a Support package tries to instantiate a global
variable. Ideally, Support packages should contain purely functional code. However,
this restriction would severely restrict the amount of code that can be placed into
Support packages.

There are two ways to use Support packages other than for purely functional code.
One way is for a Cast member to pass a local data structure as an argument to a Support
package function. If that function is "for effect", the result could then be bound
appropriately. The other method requires the application programmer to use SIMULACT's
"sim-set" function. Basically, the sim-set function allows the Support package to alter
a global variable that is present in each of the Cast packages. The goal of the Support
package facility is to reduce simulation overhead. Use of support packages does reduce
the overhead, but it does so at the expense of requiring that the user have more
knowledge about SIMULACT's implementation than is desirable.

4. CONCLUDING REMARKS

In this paper, we have described SIMULACT, a generic tool fr, simulating and
observing the behavior of networks of distributed processing agents. This system is
currently running as one component in a testbed for investigating problems in
distributed artificial intelligence. Our current network configuration contains three
Lisp machines.

The system has been particularly useful as a tool in the development of a
distributed planning system [Conry, Meyer, and Lesser 1986]. It has been used to expose
the nature of message traffic in this planner and to develop and debug plan generation
in a distributed environment. SIMULACT is also being used as an aid in the development

3-C- 10

of a distributed diagnosis system. We have found that its modularity and transparency
permit us to concentrate on the development of agents which exhibit the desired
characteristics rather than on the problems associated with managing the distributed
environment.

Acknowledgments

The Authors would like to express their appreciation for the contributions of their
colleagues Robert Meyer and Janice Searleman. Their suggestions and support have been
invaluable. This work was supported in part by the Air Force Systems Command, Rome Air
Development Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force
Office of Scientific Research, Boiling AFB, DC 20332 under Contract No.
F30602-85-C-0008. This Contract supports the Northeast Artificial Intelligence
Consortium.

REFERENCES

Brown, IL, C. Tonge, and G. Foyster. 1983. "Palladio: An Exploratory Environment for
Circuit Design," IEEE Computer (Dec.): 41-56.

Conry, S. E., R. A. Meyer, and V. R. Lesser. 1986. - "Multistage Negotiation in
Distributed Planning", University of Massachusetts, Amherst Massachusetts 01003, COINS
Technical Report 86-67 (Dec.).

Davies, B. 1986. "CAREL: A Visible Distributed Lisp." In Proceedings of the Expert
Systems Workshop (Asilomar, Pacific Grove, CA., Apr. 16-18). DARPA, 171-178.

Delagi, B. 1986. "Care User's Manual," Knowledge Systems Laboratory, Department of
Computer Science, Stanford University.

Durfee, E. 1984. "A Parallel Simulation of a Distributed Problem Solving Network." M.S
Thesis, Electrical and Computer Engineering, University of Massachusetts at Amherst.

Halstead, R.H. 1985. "Multilisp: A Language for Concurrent Symbolic Computation." ACM
Transactions on Programming Languages and Systems 7, no. 4 (Oct.): 501-538.

Hewitt, C. 1986 "Concurrency in Intelligent Systems." Al Expert (Premier): 44-50.

Lesser, V.R. and D.D Corkill. 1983. "THE DISTRIBUTED VEHICLE MONITORING
TESTBED: A Tool For Investigating Distributed Problem Solving Networks." The AI
Magazine 4, no. 3 (fall): 15-33.

Misra, J. 1986. "Distributed Discrete-Event Simulation." ACM Computing Surveys 18, no.
I (Mar.): 39-65.

3-C- II

Moon, D.A. 1986. "Object-Oriented Programming with Flavors." In O OPSLA'86 Conference
Proceedings (Portland, OR., Sep. 29 - Oct. 2). ACM, Baltimore, MD., 1-8.

Rice, 3. 1986. "Poligon, A System for Parallel Problem Solving." In Proceedings of the
Expert Systems Workshop (Asilomar, Pacific Grove, CA., Apr. 16-18). DARPA, 152-159.

Schoen,E. 1986. "TheCAOS System. "KnowledgeSystemsLaboratory,DepartmentofComputer

Science, Stanford University, Report no. KSL-86-22 (Mar.).

Steele, G.L 1984. Common LISP. Digital Press, Burlington, MA.

Stefik, M. and D.G. Bobrow. 1986. "Object-Oriented Programming: Themes and Variations."
The Al Magazine 6, no. 4 (winter): 40-62.

3-C- 12

DIRECTOR

ACTOR GHOST GHOST

E n I I m

a) Host Level Structure

EXECUTIVE DIRECTOR

DIRECTOR I DIRECTOR 2

b) Network Level Structure

Figure I SEMULACT's Simulation Structure

3-C- 13

HOST 1 HOST 2

A 0
tul -. . .. Tr17e

B E Frame
t=2 1

C F
t-3--

A 0
t=4 i Tme

B C Frame
t-5 2

t"6 "--....

A 0
t=7 Tme

8 E Frame
t-8 -- -- 3

t"9 - - C -

Figure 2

3-C- 14

THE ROLE OF KNOWLEDGE-BASED SYSTEMS IN

COMMUNICATIONS SYSTEM CONTROL

by

Robert A. Meyer
Electrical and Computer Engineering

Clarkson University
Potsdam, New York 13676

and

Charles Meyer
Rome Air Development Center, DCLD

Griffiss Air Force Base
New York 13441-5700

Abstract

The role of knowledge-based systems in communications system control is presented in
this paper as a collection of distributed, multiple agent systems serving as intelligent
advisors to human controllers. Based on an analysis of system control functions, and
interviews with field personnel, we describe a model for communications system control
in the Defense Communications System. Using this model we have designed an architecture
for a diversely distributed, multiple agent, knowledge-based system. A simulation
testbed has been implemented to support experimental development and testing of the
components of this architecture in a network of Lisp machines.

3-D- I

Introduction

The purpose of this paper is to describe one role which knowledge-based systems may
play in the future control of the Defense Communications System (DCS). The work
described here is based on the completion of the first phase of a five year research
program designed to answer fundamental questions about the use of knowledge-based
systems in communications network management and control. We have developed an
architecture for a diversely distributed, multi-agent system in which each component is
a specialized and localized knowledge-based system designed to provide assistance to the
human operator and to cooperate with similar such systems performing other functions
and/or located in physically separate facilities. This view of the role of a
knowledge-based system as a collection of autonomous, cooperating independent
specialists is an important characteristic of our approach to network management and
system control for the DCS in the future.

Modem communications systems, such as the DCS, are highly complex collections of
equipment and transmission media which currently require, in varying degrees, human
intervention for control. The control task is one which requires extensive, specialized
knowledge and the ability to reason using this knowledge in solving problems. In the
past, system control has been a difficult area to automate because the number of
situations which may arise and alternative solutions available are very large, and thus
traditional, purely algorithmic approaches have been found lacking.

In this paper we first describe a model for communications system control, based on
the DCS in Europe, and identify specific control tasks needed in this environment. We
find three fundamental kinds of knowledge-based problem solving activities are required:
(1) data interpretation and situation assessment; (2) diagnosis and fault isolation; and
(3) planning to find and allocate scarce resources for restoral of service in the event
of an outage. In addition to this functional distribution of problem solving
activities, our model requires a spatial distribution of control as well. We present an
architecture designed to meet these requirements which consists of a distributed
knowledge-based system built on a community of problem solving agents. Each agent is a
functionally specialized knowledge-based problem solver at a specific site. These
agents coordinate and cooperate to solve global problems among themselves, crossing
functional or spatial boundaries as required.

The reason for s~udying distributed problem solving lies in the observation that
humans often rely on teams of people to solve complex problems. Within a team there is
usually a division of labor so that each member of the team is a specialist on some part
of the problem. Each of these specialists has only a limited perspective about the
overall problem, and each finds that he can only deal with those aspects of the problem
for which he is responsible through cooperation with others on the team.

Distributed arificial intelligence is concerned with problems that arise when a
group of loosely coupled problem solving agents works together to solve a problem [1].
These agents have characteristics that closely parallel those mentioned above:

3-D- 2

functional specialization, local perspective, and incomplete knowledge. Each agent uses
its own local perspective in performing its tasks, though it may have a need for some
knowledge about another agent's local perspective.

At the present time a testbed has been implemented which supports simulation of
multiple agents on one or more physically distinct Lisp processors. Detailed design and
implementation of specific agents is in progress. We believe the paper has two chief
contributions to make at this time. First, based on in-depth problem domain analysis,
including field site visits and interviews with operating personnel, we have identified
specific problem solving tasks which we believe are suitable for a knowledge-based
system. Furthermore, our design for this system incorporates new ideas in distributed
problem solving: specifically, a diversely distributed problem solving architecture
which supports coordination and cooperation among functionally and spatially distinct
agents.

The Communicatons System Control Model

In our investigation of knowledge-based systems for communications system control,
we have concentrated on the European Theater of the DCS. The DCS is a large, complex
communications system consisting of many component subsystems. It provides the
long-haul, point-to-point, and switched network communications for the Department of
Defense. We have chosen the European Theater for several reasons. The DCS network
structure in Europe is particularly interesting for the study of distributed problem
solve paradigms. It consists of a large number of sites (about 200) which are
interconnected in an irregular structure. It is currently controlled by close
cooperation and coordination among a group of highly skilled human controllers
distributed throughout the system. The wide variety of transmission media and
communications equipment in use has given rise to the need for sophisticated problem
solving tools to assist these human operators in providing the best possible (control of
the system.

A careful analysis of the DCS reveals that it must be viewed from a multidimensional
perspective. The overall organization of the DCS is layered, consisting of three basic
layers: transmission facilities, circuits and networks. Each of these layers may be
further subdivided into component subsystems. Transmission facilities may be either
terrestrial or satellite. Terrestrial transmission is based on either analog or digital
channels, multiplexed into groups or digroups, and then into supergroups which are
transmitted over communications links from one station to another. The most common
transmission medium used is line-of-sight (LOS) microwave; however, there are also
tropo-scatter, fiber optic, and cable links used. Satellite transmission facilities are
also used, primarily for transoceanic links.

The transmission facilities form the backbone structure over which the second layer,
consisting of circuits and trunks, is built. These are predominately dedicated circuits
between users. Circuits may traverse several stations following fixed paths. There are
a number of key data items which are associated with each individual circuit or trunk

3-D- 3

and which are important in the performance of system control. These include the user
priority level, the restoration priority, and the quality of service required.

Networks form a third layer of the DCS organization. There are three general
categories of networks: circuit switched voice, packet switched data, and dedicated or
special purpose networks. These networks rely on trunks provided by the transmission
subsystems to interconnect the switches.

Another perspective of the DCS is equipment oriented. The DCS consists of a very
large inventory of communications equipment, such as modems, multiplexers, radios,
switches, etc. Each equipment item has certain distinguishing characteristics including
its function within the overall system, its status signals (which may be monitored and
made available to system controllers), and its control capabilities (which provide the
mechanism for implementing desired control actions on the system). Knowledge about
equipment is vital to problem solving agents attempting to control the system, and cuts
across the layered organization described above. For example, a particular multiplexer
may be a part of a transmission facility, as well as a part of one or more circuits, and
a part of one or more networks.

The final dimension along which the DCS may be analyzed is its organization for
monitoring and control. Data is collected in real-time or near real-time at each site
about the operating state of the equipment at that site and about the quality of signals
being transmitted to the site. In a completely centralized control ;ystem, this data
would be transmitted to a single control center for interpretation by the system
controllers. However, our model .of the DCS is based on the concept of a distributed
control system, in which certain sites are identified as either sub-region, region, or
area controi centers. Each control center has primary responsibility for a subset of
the other sites within some geographic neighborhood. Each control site receives data
from the sites within its region of responsibility.

Why are we interested in a distributed control system? The primary reason is that
such systems are inherently more robust and survivable in the presence of equipment
failures or externally applied threats. Total reliance on a centralized control site
would mean a total loss of system control in the event of a complete failure at or loss
of the central site, or in the event of isolation of that site from the rest of the
system. Partitioning the system into regions is also an advantage in that the control
problem may be made modular, and thus easier to solve. Local problems (ones which arise
internally to a region and have no impact outside the region) may be solved within the
local region, and do not become visible to the other regions.

In accordance with the future plans [2] of the Defense Communications Agency (DCA),
the DCS system control is to be organized in a five level hierarchical structure.
Beginning at the lowest level and moving up, each level in this hierarchy represents a
broader view of the DCS, a larger geographic area, a greater responsibility and a higher
authority. Level 5 (the lowest level) represents stations or facilities at which either
a technical control or patch and test capability exists, or an access switch exists, or
an earth terminal for a satellite link exists. Level 4 represents either a major

3-D- 4

technical control facility or nodal switch. Level 3 represents a subregion control
center (SRCF). Level 2 corresponds to theater level control and may be either an area
communications operations center (ACOC) or alternate ACOC. Level I is the worldwide
Defense Communications Agency Operations Center (DCAOC). For the purposes of this
discussion, we are concerned with level 3 and lower levels. These are the levels most
closely associated with the real time or near real time control of the system. Within
the European theater approximately 13 SRCFs are expected to be established. Thus, it is
at this level (level 3), or lower, that the need for cooperative problem solving is
likely to be the greatest.

System Control Tasks

System control is defined [3] as the process "... which ensures user to user service
is maintained under changing traffic conditions, user requirements, natural or manmade
stresses, disturbances, and equipment disruptions on a near term basis." System control
incorporates five major functions: facility surveillance, traffic surveillance, network
control, traffic control, and technical control. Each of these functions will be
described in more detail and related to specific problem solving activities.

Three distinct problem solving activities have been identified within the five major
functions of system control. We refer to these activities as performance assessment
(PA), fault isolation (FI), and service restoral (SR). A general task description for
each of these is given below and related back to one or more of the five functions of
system control.

Performance Assessment (PA)

Performance assessment may be viewed as a problem in data interpretation and
situation assessment. Since data is available only on a distributed basis, coordination
must take place among the PA agents in order to arrive at a coherent view of the state
of the communications system. The facility surveillance and traffic surveillance
functions of system control are included within the PA activity. Real time equipment,
transmission network, and traffic data are measured and collected to provide the
controller with the information needed to determine the status of the transmission
system and facilities, the quality of communications circuits and network performance.
Trouble reports from users are also significant inputs to this activity.

The goal of PA is to formulate a local view of system status and performance, and to
identify as quickly as possible the impact of any observed deviations from normal
operating conditions. The PA agent is responsible for determining the need to invoke
either fault isolation and/or service restoral agents. Since few problems are likely to
be localized within the area of responsibility of a single SRCF, the PA agent must also
communicate with similar agents in neighboring areas to arrive at a consistent
assessment of status throughout the system.

3-D- 5

Fault Isolation (FI)

The fault isolation task is a diagnostic activity. It is concerned with identifying
the specific cause and location of faults within the communications system. The term
"fault" is used in a very broad sense to mean either a complete outage of service or a
degradation in quality or performance. The F1 agent responds to reports of known or
suspected faults determined by PA. Much of the same data available to PA is also used
in the FI activity, however the analysis is carried out in greater depth, and the
cause-effect relationship is emphasized. In some instances the immediate results of F1
may be inconclusive and will require additional testing to resolve ambiguities in the
data. The FI agent should be able to direct the initiation of automatic test functions
where such functions are available. Knowledge about specific equipment types, the
meaning of test results and the current subsystem state are all used by Fi to infer the
probable cause of the failure.

The FL agent incorporates the in-depth analysis aspects of facility and traffic
surveillance as well as the testing aspects of technical control Coordination and
cooperation with similar agents at intermediate or distant end stations involved in a
faulty link, trunk, circuit, or network are often necessary to determine the cause and
location of a fault.

Service Restoral (SR)

Service restoral is a plan generation and selection activity which recommends a set
of specific control actions needed to restore user service. These actions may involve
alternate routing of trunks or circuits, switch control (such as code cancellation, code
blocking, modification of routing tables, etc.), or transmission system configuration
control (such as reallocation of equipment, use of backup or spare equipments, etc.).
The network control, traffic control, and some aspects of the technical control
functions are encompassed in the SR activity.

System Architecture

The system architecture which we describe has been designed to support multiple
problem solving agents distributed both functionally and spatially. This discussion
addresses three primary facets of the architecture: (1) the role of this distributed
knowledge-based system in the context of human network controllers in the DCS; (2) the
structure of the intelligent system residing at each node; and (3) the overall structure
of the distributed problem solving system as it is incorporated in the simula:ion
testbed.

Any knowledge-based distributed probLm solving system actually incorporated in the
DCS field environment would be most accurately viewed as an intelligent assistant to the
system controllers. It would perform the tasks of filtering the data received, and
analyzing and interpreting it as well. Based on these interpretations, it would suggest
alternative restoral plans and advise the humans as to which equipments are probably

3-D- 6

malfunctioning and what control actions might be appropriate. The human operator would
have the responsibility of directing service restoral, dispatching service personnel,
and initiating control actions. In addition, the human retains the privilege of
preempting the system at ary time. As an intelligent assistant, the system would
relieve the controller of many tedious tasks. It would also provide a vehicle for
training activity that can be utilized by new personnel

As the discussion in the previous section indicates, several modes of problem
solving must be performed at each site corresponding to a control facility of the
communications system. Performance assessment is an ongoing data interpretation and
situation assessment task. Fault isolation is a diagnostic activity and is initiated
when PA has determined the possible existence of an equipment failure. Service restoral
is a plan generation task, and is also initiated by PA. T se tasks ire relatively
independent and may be active concurrently; however, they must share the same base of
local knowledge concerning the status of the communication system and its expected
behavior. An implicit assumption is that each control site only maintains detailed
knowledge about the communications equipment and circuits which are within its region of
responsibility. Our node architecture represents a decomposition of nodal problem
solving activity into these three primary tasks and assumes the local knowledge base
contains only very limited knowledge about the system outside the local area.

The structure of this architecture for distributed problem solving reflects
distribution in two dimensions. At a local level, the system is seen as a number of
functionally specialized agents that cooperate in a loosely coupled fashion. These
agents comprise a local participant in a network-wide team of problem solvers. At the
global level, the system may be viewed as a group of relatively independent, spatially
distributed problem solving systems cooperating to solve a collection of problems. One
of the systems is composed of the group of fault isolation agents. The fault isolation
agent at each node cooperates with its counterparts at other nodes in solving the fault
isolation problem for the communications system. In a similar fashion, the service
restoral and performance assessment agents may be regarded as distributed problem
solving systems in their own right.

An important feature of this architecture is the concept of a local, shared
knowledge base. Although each problem solving agent has its own, private knowledge
about how to perform the specialized problem solving activity for which it is
responsible, much of the knowledge needed for problem solving is related to the
communication system. This knowledge describes the network structure and organization,
the details of different equipment types, and what is known about the current state of
the communications system. Since this knowledge is spatially distributed, and shared
among the other functional agents at the same local site, it is implemented as a single
local knowledge base. The details of knowledge representation and structure of this
knowledge base have been presented elsewhere, (4] and will not be repeated here.
Suffice it to observe that since this knowledge base contains dynamic information, and
is shared by multiple, independent agents, some sort of access control is necessary.
This is provided in the form of the knowledge base manager.

3-D- 7

The knowledge base manager serves as an intelligent interface agent between the
knowledge base and the three primary agents, PA, FT, and SR, which are operating
concurrently. The knowledge base manager embodies knowledge about the local knowledge
base itself. For example, it knows the limits of that knowledge base in the sense that
if a query for information is made which requires knowledge not locally available, the
knowledge base manager issues a message requesting the information from an appropriate
distant node(s). The knowledge base manager is also knowledgable about the time
sensitivity of some parts of the local knowledge base and is thus able to make
intelligent (as opposed to arbitrary) decisions in controlling concurrent requests for
access. Finally, the knowledge base manager has the responsibility for maintaining
consistency in the local knowledge base. In order to petform these functional tasks,
the knowledge base manager may be viewed as an agent having meta-level knowledge.

The local architecture thus consists of four knowledge-based components, cooperating
on a local basis to maintain an informed state of awareness about the local operating
conditions. This is shown in Figure 1 below.

Performance Fault Isolation Service Restoral
Assessment

Knowledge Base Manager

Local
Knowledge Base

Figure 1. Control node architecture

Interagent communication is supported in the form of simple messages called memos. A
memo may be sent to one or several recipients and may be a request for information or an
action to be taken, a response to a previous request or some unsolicited information
shared by an agent with others. Additional components not shown in above diagram are
those which interface with the external world, such as interaction with the operator,
and real-time data collection.

3-D- 8

Concluding Remarks

A generic simulation testbed, SIMULACr, has been implemented [5] to support
experimental testing and evaluation of alternative design approaches for the
distributed, multiple agent knowledge-based system described here. This testbed will
become a tool for investigating a number of significant issues in the design of
cooperative, distributed problem solvers. The goal of this research is to develop a
better understanding of the fundamental problems which arise in building a distributed
problem solving system. We believe the problem solving environment demanded by the
critical need for defense communications under a wide variety of stressful conditions is
most likely to be satisfied by a distributed, knowledge-based system, and thus the
results of our research should provide guidance in meeting this need in the future.

Acknowledgments

This work was supported in part by the Air Force Systems Command, Rome Air
Development Center, Griffiss Air Force Base, New York 13441-5700, and the Air Force
Office of Scientific Research, Boiling AFB, DC 20332 under Contract No.
F30602-85-C-0008. This contract supports the Northeast Artificial Intelligence
Consortium (NAIC).

References

1. Davis, R. and P.G. Smith, "Negotiation as a Metaphor for Distributed "oblem
Solving," Artificial Intelligence, VoL 20, pp. 63-109. Jan 1983.

2. "Defense Communications System Control Plan (Europe)," Defense Communications
Agency. Sept 1984 (draft).

3. "DCA Circular 310-70-1", Vol I, II, and MII, Defense Communications Agency.
4. Conry, S.E., R.A. Meyer and .E. Searleman, "A Shared Knowledge Base for

Independent Problem Solving Agents," Proc. of the Expert Systems in Government Symp.
McLean, VA. Oct 1985.

5. MacIntosh, Di. and S.E. Corny, "SIMULACT: A Generic Tool for Simulating
Distributed Systems," Eastern Simulation Conference. Orlando, FL. April 1987.

3-D- 9

MACHINE INTELLIGENCE FOR

DoD COMMUNICATIONS SYSTEM CONTROL

by

Gerald Michael Adams
and

Charles N. Meyer
DCLD/ Rome Air Development Center

Griffiss Air Force Base, NY 13441

Robert A. Meyer
Electrical and Computer Engineering Department

Clarkson University
Potsdam, NY 13676

Abstract

Modem military communication systems are complex, multi-layered networks which
demand an integrated and automated approach to network management and system control.
Effective system control requires interpretation of operating data to assess network
status, planning to reconfigure network resources in the event of outages, and decision
making to effect appropriate control actions. To meet these needs, the U.S. Air Force,
in conjunction with the Defense Communications Agency (DCA), is investigating the use of
machine intelligence techniques to provide real-time expert assistance to the human
operators responsible for the management and control of the Defense Communications
System. This paper describes an evolutionary approach to the development of these
intelligent assistants, in which modular hardware and software systems are being
developed and tested in an incremental progression of closely coupled projects.

3-E- I

1. Introduction

1.1 The Defense Communications System

The Defense Communications System (DCS) is the primary long-haul communications
system for the U.S. military forces. It embodies both Government owned and leased
facilities within the U.S. and abroad. These facilities encompass a wide range of
networks, including direct dedicated lines, and circuit, message and packet switched
networks. The DCS provides both voice and data communications services at multiple
levels of security. As a result of continuing efforts to improve the quality and
reliability of service, the DCS consists of a large variety of equipment types, spanning
technologies from basic analog systems, such as the low data rate voice channel
teletypes, to modern digital statistical multiplexers.

The DCS consists of stations interconnected by links. Each station has of a
collection of communications equipment, typically associated with a group of local
users, for example at an airbase. Of course some stations have no local users, but
serve as repeaters or relay stations, or as switching centers. Each link represents the
transmission medium interconnecting two stations, such as a microwave radio channel, a
satellite channel or cable. This station/link model of the DCS represents only the
first "layer" - the transmission subsystem - in a multi-layer structure. The
transmission layer is the base upon which other networks are constructed. For example,
AUTOVON is the worldwide circuit switched voice network for the military. The long-haul
interswitch trunks needed for AUTOVON are provided by the transmission subsystem.

The management and control of this complex communications system is clearly an
important task. We rely heavily on fast, secure, high quality communications both
during peace time and during conflict. We have come to expect near 100% availabilty of
communications resources. The job of providing the management and control of these
resources to meet these expectations is called Communications System Control.

L2 Communications System Contirol

The objective of system control is to maintain end-co-end user communications
connectivity under a variety of adverse conditions. These range from routine minor
equipment malfunctions to major destruction of facilities due to hostile actions.
Effective communications system control requires managing network and transmission
resources so as to make the best utilization of available assets given the priorities of
the current context. It should be emphasized that this is a very dynamic environment
since actions external to the communications system may bring about significant changes
in traffic loading and priority of users.

Currently, the structure of this control system consists of two complementary
parts. The transmission subsystem is predominately controlled in a decentralized manner
from tech control facilities (TCF) distributed throughout the network. Each TCF is
staffed on a 24 hour basis by highly trained military personnel known as "tech

3-E- 2

controllers". Generally TCFs are located outside the United States, since within the
U.S. the transmission subsystem is leased from common carriers, and is not under direct
government control. Networks, such as AUTOVON or DDN (the Defense Data Network), are
controlled from centralized control centers. These are either the Area Communications
Operations Center (ACOC) in the European and Pacific theaters, or the DCA Operations
Center (DCAOC) in the U.S. There is a strict hierarchical relationship among these
control system elements; the DCAOC is at the top, having a worldwide view, the ACOCs
each have a theater-wide view, and each TCF has a local perspective.

There are important changes being made to this current structure. The objective
control structure for the future DCS incorporates the concept of a subregion and a
subregion control facility (SRCF) [1]. The SRCF is intended to distribute the conrol
capability of the various networks thus providing a more survivable control system. The
SRCF is also expected to collect transmission subsystem monitoring data remoted from
several TCFs and assume some degree of transmission control. The SRCF thus provides a
mix of both distributed and centralized control and management capabilities. The SRCF
will also provide die means for integrating transmission monitoring and control and
network management functions.

1.3 Functional Requirements

In this section we examine, at a high level, the functions required to achieve the
objectives of communications system control We will use the term "system controler"
in a generic sense to mean any combination of one or more humans and machines
collectively charged with the responsibility for achieving the system control
objectives.

First, the system controller must form an assessment of the current global network
status. This involves interpretation of data collected from throughout the network and
correlation of information from disjoint or dissimilar sources. For example, a link
failure in one part of the network might have a major impact on the traffic loading of a
switch in another part of the network. Under normal conditions this additional loading
might not be criticaL However, if other conditions (perhaps completely external to the
communicatons system) were also contributing to an increased traffic load at this same
switch, then a control action might be necessary to prevent an overload situation.
Recognition of this relatively simple situation requires interpreting both transmission
alarm dam and switch traffic dam, assessing the impact of the link failure, and
correlating this conclusion with the assessment of the current switch condition.

A second functional requirement for the system controller is to formulate plans for
alternative actions which would alleviate problem situations of the type described
above. Planning is the primary function which attempts to make the best utilization of
available communications assets.

A third requirement is for a diagnostic capability. While assessment recognizes
changes in network status, and planning provides alternatives to alleviate problems, a
longer term solution must be sought which attempts to diagnose the cause of the problem,

3-E- 3

so that it may be corrected. In many cases diagnosis is simply a matter of tracing
circuit paths until the faulty equipment is located. However, it is not always so
simple. Often a faulty circuit may traverse one or more segments in which no alarms or
other indications of failure are present. Another complicating factor is the
possibility of multiple faults, some of which may mask others. Diagnosis requires
careful reasoning from the known set of alarms and measured data, an understanding of
the functional differences in each of the various equipment types, and knowledge about
the network interconnection structure.

1.4 Summary

The next section describes the nature of system control problems which currently
exist or may be anticipated in the future. Section three is a synopsis of the current
programs in the evolutionary approach being pursued by the Rome Air Development Center.
These programs are seeking engineering applications of machine intelligence to system
control problems. In section four we provide a rationale for the use of machine
intelligence as opposed to other, more traditional methods. Concluding observations are
made in section five.

2. Problem Description

This section describes the system control problem in two distinct time frames: (1)
the current and near-term context, and (2) a long-term context. In the near-term there
are two major changes taking place which are having a significant impact on the ability
of the various military departments to provide the highest quality tech control These
are a rapidly changing telecommunications technology and an erosion of the supply of
senior manpower. The impact of these changes is described in section 2.1. For the
long-term, system control will be most influenced by the implementation of these new
technologies currently planned for the near-term and by the changing structure of the
control system itself. These issues are addressed in section 2.2.

2.1 Near-term Problems

At present, system control is almost entirely a manual operation. Tech controllers
have some automated equipment monitoring and automated test capability, but they do not
have any automated support for fault isolation and diagnosis functions. A typical TCF
may have 1000 or more circuits which either traverse or terminate at the local station.
In addition, the tech controller may have responsibility for equipment at a remote,
unmanned relay station. The current "data base" upon which the tech controller depends
for detailed information about these circuits is a card file. Each card has the circuit
data on one side, and often has a schematic diagram of the circuit on the reverse. Much
of the expertise needed to identify and diagnose problems with circuits traversing older
equipment resides only in the experience of the senior tech controllers.

The rapid change in telecommunications technology has resulted in modernizaiton of
station equipment at a much greater pace than can be matched by tech controller training

3-E- 4

programs. The impact of this is that the "new" tech controller needs more on-the-job
learning. Typically, this means the new controller learns about the operation and fault
diagnosis procedures for sophisticated digital communications equipment only when a
problem arises. Since the reliability of these equipments is usually quite good, the
opportunities for on-the-job training are few and infrequent. Given the sophistication
of some of these devices, it is simply not realistic to expect tech controllers to
become expert in a short time period under these conditions.

The training problems are only exacerbated by an erosion of the senior tech
controller manpower supply. The rapid growth of the commercial telecommunications
industry has placed a premium on the skills possessed by military tech controllers. As
a result these people are given significant economic incentives to leave the military
for private industry at about the same time they are just beginning to become fully
trainedL Thus the pool of senior, "expert" tech controllers is dwindling.

2.2 The Long-term Environment

As the transition to an all digital system becomes complete, the nature of system
control will also change. At the lower levels, individual equipments will incorporate
more than simple built-in test capability and will include diagnostic capability as
well, thereby allowing self-identification of failed units at the replacement unit
leveL The incorporation of automated digital patching systems (called DPAS, for
Digital Patch and Access System) will allow an entirely different, and more responsive,
approach to circuit restoration when outages do occur.

The changing control structure will also have an impact on system control problems
and how they are solved. Perhaps the most significant of these changes is the
introduction of the SRCF and the potential for correlation of monitored data and
integration of control actions across transmission subsystems and networks. To take
advantage of this situation, system controllers must have a broader scope of expertise.
In this new environment, a system controller should be able to recognize a problem which
arises in one parr of the system, and predict the impact on the global system of various
network or transmission control actions taken to alleviate this problem.

The combination of improved on-line monitoring, remote reporting of alarms to a
central point within a subregion, and the need for correlation of data from both
transmission subsystems and networks presents a problem of potential information
overload for the human controller at the SRCF. During a major outage the volume of data
being sent to the SRCF which the controller must examine, interpret, and act upon is too
much for human decision making. Along with this, the controller has many alternative
corrective actions which must be considered within this dynamic context. These factors
make an accurate and timely assessment difficult for the human controller. It seems
most unlikely, given the current problems with senior level manpower retention, that the
functional requirements for system control could be adequately met by human controllers
alone.

3-E- 5

Another major challenge for system control in this longer term environment is to
achieve an appropriate balance between distributed and centralized control. The SRCF
has been introduced in recognition that survivability of network management can only be
achieved by distributing the potential for network monitoring and control to several
stations instead of concentrating it at a single, vulnerable site. However,
distribution introduces new problems concerned with maintaining global coherence among
these distributed controllers. An important question to be addressed is how might
distributed control facilities (such as the SRCFs) work in a cooperative manner for the
benefit of the system as a whole?

3. Evolutionary Approach

3.1 Background

The problem of designing and implementing an effective control system for a
complex, evolving communications network is not new. The U.S. Air Force has had prior
experience in at least two related projects. In both cases, an attempt was made to
design a single, complete, fully automated control system as one major engineering
effort. In both cases the products fell short of expectations. A major factor in both
cases was the need from the control system designer's perspective to completely specify
everything in advance while the target system was still evolving and thus could not be
fully specified. The modular, evolutionary approach currently being followed is
intended to avoid these same problems again.

3.2 Modu!s- Developmert

The key aspect of this evolutionary approach is the development of incremental
improvements in system control capability through a series of modular hardware/software
systems. For example, previous work has already developed an automated transmission
monitoring and control system (TRAMCON). While this represents only a "bare bones"
degree of automation, it provides an essential service which "an be used by wore
advanced systems which will come later. Similarly, as automated test systems are
currently being developed, these too may be used by more advanced systems of the future
as low level "extension tools" to test circuit segments suspected of degradation or
failure. One of the benefits of this modular development is the usefulness of each of
these additional systems. Since each new module is designed to provide an important
functional capability independent of subsequent developments, failures or problems with
more advanced systems do not disable the lower level modules.

A modular development approach offers other advantages as well. For example, it
allows flexibility in adapting to changing system requirements. As each new modular
component is developed, tested, and placed in the field, valuable feedback may be
gathered from both the developers and the users which enhances the performance of
subsequent components.

3-E- 6

Another, pragmatic reason for a modular development process is budgetary.
Traditionally communications systems rank behind weapon systems in seeking the attention
of military and civilian budget planners. Funding for large, "do it all at once"
programs is simply not available under present budget constraints. In particular,
research involving the application of machine intelligence techniques, which is
admittedly a high risk development area, must proceed by a carefully controlled sequence
of demonstrably successful projects.

3.3 The Expert Tech Controller

The first system to be developed in this modular approach is an expert system to
provide assistance to a tech controller in performing fault diagnosis. This system is
intended to address the near-term system control environment. The initial version has
been designed and implemented by Lincoln Laboratories and is described in detail in
another paper in this session [2]. The objective of this effort is to capture the
expertise of the most knowledgeable, senior tech controllers, and then build a
knowledge-based system which could guide a less-skilled controller through a fault
diagnosis procedure with the same proficiency as the senior "expert". The system was
developed with the full cooperation of the TCF staff at Andrews Air Force Base, MD, and
has been installed experimentally there since December, 1986. Initial reaction by TCF
field personnel has been favorable.

Using the expert system building tool, ART, from Inference Corporation, Lincoln Lab
researchers were able to quickly construct prototype versions which were then
demonstrated to the expert tech controllers. These tech controllers provided valuable
feedback on both the accuracy and useability of each successive version. The result is
a system which incorporates both rule-based and procedural programming paradigms and
emphasizes a natural human interface based on graphically displayed circuit diagrams.

3.4 Knowledge-based Control For The Defense Switched Network

The second project addresses system control needs at the boundary of near-term and
long-term environments. The Defense Switched Network (DSN) is a circuit switched voice
network designed to replace the older technology AUTOVON switches with new digital
switches. The goal of this effort is to apply machine intelligence to the network
control function for DSN. One specific objective is to demonstrate the use of a network
simulatr in the knowledge acquisition process and in validating the performance of a
knowledge-based system as it is being developed. This is an important problem when
intelligent control systems must be designed before the system to be controlled has been
in operation - and thus before a base of prior experience is available. It also
represents a novel demonstration/testing approach for any system which can not be taken
out of service or offline for testing purposes.

This project is currently in the initial stages of study by researchers at Lincoln
Laboratories and work has concentrated on the network simulator. As the project
proceeds, a dual processor architecture is envisioned. The simulator runs in one

3-E- 7

processor in a UNIX environment, while the second processor supports the development of
the knowledge-based DSN controller in a LISP world. Initially the interface between
these two systems is a knowledge engineer/programmer. Using the simulation to develop
an understanding of DSN operation, the engineer will develop rules and procedures which
constitute the base of knowledge to be used by the DSN controller. For testing purposes
the two systems will be directly connected, and the decisions made by the controller
will act upon the simulated network. In this way the performance of the DSN controller
may be observed under a variety of network operating scenarios. This configuration also
provides a basis for further experimentation in the automated development of expert
systems.

3.5 Cooperative Problem Solving For Distributed Network ,Management

The third research effort is an investigation of distributed problem solving. This
effort, being performed by Clarkson University under a contract with the Northeast
Artificial Intelligence Consortium (NAIC), is directed toward the long-term system
control environment. Work in this area offers the hope of providing a means for
building survivable networks of cooperating, intelligent agents which are able to
interact in performing each of the various tasks required in system control. While the
work builds on the results of the previous efforts, it is aimed at finding new problem
solving paradigms suitable for a distributed set of agents. Each of these agents should
be able to function independently of the others, yet be able to cooperate with any
surviving subset to provide control of the maximum remaining network resources.

A diversely distributed architecture has. been designed which supports both the
geographic distribution of control facilities among SRCFs and the functional
distribution of system control tasks (3-51. This architecture is being implemented in a
distributed AI system (DAISY) testbed. The DAISY testbed supports simulation of a
distributed problem solving system on a group of heterogeneous LISP machines, in which
the number of processors simulated exceeds the number of actual processors [6]. DAISY
also includes a single user interface to a global knowledge base which employs a
natural, graphics-based language. Partitioning of the knowledge base along subregional
boundaries is performed by the system prior to beginning a simulation session, thus
giving each simulated control facility a localized, private knowledge base. The
specific problem solving agents for each control facility are currently under
development.

4. Rationale

In this section we address the question, "Why AI?". From a researcher's
perspective the obvious answer is, "Because it is an interesting problem domain."
Distributed network management and control as a problem area has a number of
characteristics which make it an appropriate domain for developing and testing new ideas
in distributed problem solving. First, it is a real problem, not a toy, and ha.,
sufficient complexity to make it challenging. The problems which arise are not

3-E- 8

intractable, yet they often require a substantial amount of time when solved by humans.
There are no known algorithmic solutions, and exhaustive searching is not practical.
Further, in the real world of dynamic operating conditions, with noisy and/or incomplete
data, it is impossible to prepare in advance for all of the possible situations which
may arise. Conventional approaches to automated system design do not permit operation
under these conditions.

From the user's perspective, the development of machine intelligence applications
offers the promise of providing a reliable, high-level assistant to system controllers.
In most situations, a tech controller or network manager does not need more data. What
is needed is help in interpreting the data, in recognizing critical situations quickly,
and in sorting through the many possible corrective actions to find the best choice in
the current context. These automated systems must work with the human decision maker in
a natural manner. We are just beginning to be able to build systems which approach
these goals, and the potential which Al techniques have to offer in developing these
systems cannot be ignored.

5. Concluding Remarks and Acknowledgements

In this paper we have presented a high level view of a an evolutionary approach to
the development of machine intelligence applications for communications system control.
This approach involves the development of both hardware and software modular components,
each designed to provide an incremental improvement in overall system ccatrol
capability. These systems also serve as a series of increasingly complex systems which
together will make a significant advancement in the application of machine intelligence
technology. While this program is still in the early stages of development, a prototype
expert system has been implemented and placed in the field for experimental testing.

Finally, we also observe that although all the work described here has been
specifically directed toward network management and control for the Defense
Communications System, it is applicable to a much more broader range of problems. For
example, the DSN controller work will involve fundamental research on issues of a much
wider interest, such as the testing and evaluation of expert systems, and automated
knowledge acquisition. The distributed Al research has wide ranging applications, not
only to survivable communications networking in general, but also to other problems
involving distributed resource allocation with decentralized knowledge and control.

The work on cooperative problem solving was supported by the Air Force Systems
Command, Rome AirDevelopment Center, Griffiss AirForce Base, New York 13441-5700, and
the Air Force Office of Scientific Research, Boiling AFB, DC 20332 under Contract No.
F30602-85-C-0008. This contract suppors the Northeast Artificial Intelligence
Consortium (NAIC).

3-E- 9

References

1. "Defense Communications Operations Support System Subregional Control Facility
Functional Requirements", Defense Communications Agency, April 1986. (Draft).

2. B. W. Otis and H. M. Heggestad, "The Expert Tech Controller. A Network Management
Expert System", to be presented at MILCOM 87, Washington, D.C., October 1987.

3. S.E. Cor'y, R.A. Meyer, and LE. Searleman, "A Shared Knowledge Base For Independent
Problem Solving Agents," Expert Systems in Government Symposium, McLean, VA, October
24-25, 1985, pp. 178-186.

4. S.E. Cory, "Distributed Artificial Intelligence in Communications Systems", Expert
Systems in Government Symposium, McLean, VA, October 22-24, 1986, pp. 286-289.

5. R.A. Meyer and C. Meyer, "The Role of Knowledge-based Systems in Communications
System Control," SPIE Applications of Artificial Intelligence V Conference, Orlando, FL,
May 18-20, 1987.

6. Di. Macintosh and S.E. Corny, "SIMULACT: A Generic Tool For Simulating Distributed
Systems," Eastern Simulation Conference, Orlando, FL, April 6-8, 1987.

3-E- 10

ti2 ". . .

MISSION
of

*Rome Air Development Center

M 1 DC plans and executes researck development, test and selected
acquisition programs in support of Commar;4 Contro4 Communications
and Intellience (&) activities. Technical and engmneering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of &I systems. The aras
of technical competence include communicaions, command and control
battle management, information processing, survellance sensors,
intelligence data collection and handlin& solid state sciences,
electromagnetics, and propagation, and eecwonic, maintainability and
comatibiiy.

